Angle resolved photoemission spectroscopy 각분해능 광전자 분광

김용관 *한국과학기술원 물리학과*

목차

國 각분해능 광전자 분광의 기초 ↓ 광전효과 - 각분해능? *↓ 관측법 및 관측결과를 전자구조로 매핑 하는 법 ↓ 기본 데이터 읽는 법*

♂심화 - ARPES로 얻을 수 있는 정보√Intensity에 숨겨진 정보

 \checkmark Light polarization dependence

√Electron self energy info. in ARPES spectrum

핵심화 - 최신 ARPES 기법 리뷰 √ 및

√ 샘플

√ 전자 분광 및 검출

목차

國 각분해능 광전자 분광의 기초 ↓ 광전효과 - 각분해능? *↓ 관측법 및 관측결과를 전자구조로 매핑 하는 법 ↓ 기본 데이터 읽는 법*

♂심화 - ARPES로 얻을 수 있는 정보√Intensity에 숨겨진 정보

 \checkmark Light polarization dependence

√Electron self energy info. in ARPES spectrum

핵심화 - 최신 ARPES 기법 리뷰 √ 및

√ 샘플

√ 전자 분광 및 검출

광전자 분광

Photoemission spectroscopy

XPS - X-ray photoemission spectroscopy UPS - UV photoemission spectroscopy ARPES - angle-resolved photoemission spectroscopy

광전자 분광으로 얻을 수 있는 정보 - XPS

광전자 분광으로 얻을 수 있는 정보 - UPS

광전자 분광으로 얻을 수 있는 정보 -ARPES

광전자 분광으로 얻을 수 있는 정보 -ARPES

각분해능 광전자 분광 구성 요소 및 과정

에너지분광

온동 에너지를 어떻게 선별해 낼 것인가?

운동량 측정 - 각분해능

Momentum is 'vector' - magnitude & direction (θ , φ)

KAIST

운동량 측정 - angle scan

$F(\theta, \alpha, KE) \neq F(\theta, \varphi, KE)$

정확히는 solid angle 정보가 아님!

from Dr. S.-K, Mo's presentation

운동량 측정 - photon energy scan

 $F(\theta, \alpha, KE) \neq F(\theta, \varphi, KE)$

F(*θ*, *α*, *ħω*, *KE*)

$$k_{f} = \sqrt{\frac{2m}{\hbar^{2}}KE}$$

$$k_{f}^{x} = \sqrt{\frac{2m}{\hbar^{2}}KE\sin\theta}$$

$$k_{f}^{y} = \sqrt{\frac{2m}{\hbar^{2}}KE\cos\theta\sin\alpha}$$

$$k_{f}^{z} = \sqrt{(k_{f})^{2} - (k_{f}^{x})^{2} - (k_{f}^{y})^{2}}$$

$$KE = \hbar\omega - \phi - BE$$

$$k_f^z = \sqrt{(k_f)^2 - (k_f^x)^2 - (k_f^y)^2}$$

→ F(kx, ky, K.E) @ fixed kz

F(kx, ky, kz, KE)

22.07.14 가속기 스쿨

에너지- 운동량 변환

 $|f\rangle F(kx, ky, kz \& K.E) \longrightarrow |i\rangle B(kx, ky, kz \& B.E)$

에너지 보존
$$KE = \hbar\omega - \phi - BE$$

22.07.14 가속기 스쿨

운동량 변환

ΚΔΙΣΤ

Momentum

표면전자회절

Momentum

표면전자회절

KAIST

그럼kz 정보는 어떻게 아는가?

Real space

Kz 정의에 있어 다른 어려운 점

|ƒ⟩F(kx, ky, kz & K.E) → |i⟩ ^B(kx, ky, kz & B.E) kz 는 정확히 알 수 없다!

ARPES는 surface sensitive technique이다!

△★★ 만큼 합쳐서 보고 있다!

Ζ

전자구조 매핑 요약

Y. W. Li et al., Phys. Rev. B 97, 115118 (2018)

F(∂, α, ħω, KE)→F(kx, ky, kz, KE)→B(kx, ky, kz', B.E) 4차원정보가 능

KAIST

 $F(\theta, \alpha, KE) \longrightarrow F(kx, ky, K.E) @kz0 \longrightarrow B(kx, ky, B.E) @kz0' + \Delta KZ$

3 차원 data

ARPES data plot 종류

I(kx,ky)

K

Cut 1

-0.5

ΚΔΙΣΤ

2*차원* Plot

Cut 2

15 K

0.5

M

0.0

 k_{x} (Å⁻¹)

I(BE,kx) @fixed ky, kz

High symmetry cut

ARPES data plot 종류

I 차원 Plot

I(kx) @fixed ky, kz, BE Momentum Distribution Curve (MDC)

Y. Hao et al., PRX 9, 041038 (2019)

ARPES data plot 종류

목차

國 각분해능 광전자 분광의 기초 ↓ 광전효과 - 각분해능? *↓ 관측법 및 관측결과를 전자구조로 매핑 하는 법 ↓ 기본 데이터 읽는 법*

♂심화 - ARPES로 얻을 수 있는 정보√Intensity에 숨겨진 정보

 \checkmark Light polarization dependence

√Electron self energy info. in ARPES spectrum

핵심화 - 최신 ARPES 기법 리뷰 √ 및

√ 샘플

√ 전자 분광 및 검출

ARPES as a k-space microscope

C. E. Matt et al., Nat. Comm. (2018)

A. Tamai et al., PRX (2019)

KAIST

2D materials

J. M. Riley, et al., Nat. Phys. (2014)

Topological materials

Y. J. Chen, et al., PRX (2019)

Y. Chen et al., Science (2010)

22.07.14 가속기 스쿨

ARPES는 밴드만보여준다?

NO! 밴드 뿐만 아니라 전자가 고체 안에서 어떻게 살고 있는지 알려 준다!

Photoelectric effect in terms of quantum mechanics

$$|i\rangle \longrightarrow |f\rangle$$

dipole transition by $H' = -\frac{e}{mc} \mathbf{A} \cdot \mathbf{p}$
transition rate
$$\omega_{fi} = \frac{2\pi}{\hbar} \left| \vec{\langle f | A \cdot p | i \rangle} \right|^2 \delta(E_f - E_i - h\nu)$$

실제로는 N particle system에서 전자를 뽑아 본다

Transition rate
$$w_{fi} = \frac{2\pi}{\hbar} \left| \langle \Psi_f^N | H_{int} | \Psi_i^N \rangle \right|^2 \delta \left(E_f^N - E_i^N - h\nu \right)$$

Sudden approximation $\Psi_f^N \to \Psi_f^N = A\phi_f^k \Psi_f^{N-1} \quad \Psi_i^N \to \Psi_i^N = A\phi_i^k \Psi_i^{N-1}$

$$w_{fi} \propto \sum_{f,i} \left| M_{f,i}^{\mathbf{k}} \right|^2 \sum_m \left| c_{m,i} \right|^2 \delta \left(E_{kin} + E_m^{N-1} - E_i^N - h\nu \right)$$

 $\left|M_{f,i}^{\mathbf{k}}\right|^{2} \equiv \left|\langle\phi_{f}^{\mathbf{k}}|\mathbf{A}\cdot\mathbf{p}|\phi_{i}^{\mathbf{k}}\rangle\right|^{2} \qquad A^{\pm}(\mathbf{k},\omega) = \sum_{m} \left|\langle\Psi_{m}^{N\pm1}|c_{\mathbf{k}}^{\pm}|\Psi_{i}^{N}\rangle\right|^{2}\delta\left(\omega - E_{m}^{N\pm1} + E_{i}^{N}\right)$

$$I(\mathbf{k}, E_{kin}) = \sum_{f,i} w_{f,i} \approx |M(k)|^2 A^-(k, \omega) f(\omega)$$

Matrix element Spectral weight: how electron moves : symmetry info

M(k) 에서 알 수 있는 정보

$$I(\mathbf{k}, E_{kin}) = \sum_{f,i} w_{f,i} \approx |M(k)|^2 A^-(k, \omega) f(\omega)$$

$$M(k) = \langle f | A \cdot p | i \rangle = \langle f | e \cdot r | i \rangle \quad e \cdot r = x \quad \text{light polarization}$$

$$dipole \ approx.$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$dipole \ approx.$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$\mathcal{E} = \langle f | A \cdot p | i \rangle = 0$$

$$M(k) = \langle 2p_x | x | 1s \rangle \neq 0$$

odd odd even

선편광 사용의 경우

with linear polarization,

parity information of initial state

 $e \cdot r = x, y, z$

22.07.14 가속기 스쿨

원편광 사용의 경우

with circular polarization,

quantity related to inversion or time-reversal symmetry

 $e \cdot r = x \pm iy$

Circular dichroism \rightarrow OAM in the initial state

from Dr. S. Cho's presentation

More on M(k): Resonant photoemission

KAIST

목차

國 각분해능 광전자 분광의 기초 √광전효과- 각분해능? *√ 관측법 및 관측결과를 전자구조로 매핑 하는 법 √ 기본 데이터 읽는 법*

♂심화 - ARPES로 얻을 수 있는 정보√Intensity에 숨겨진 정보

 \checkmark light polarization dependence

√Electron self energy info. in ARPES spectrum

ਯ심화-ARPES 기법리뷰

√ 빛 √ 샘플

√ 전자 분광 및 검출

22.07.14 가속기 스쿨

심화 - ARPES technique 리뷰

광원의 요구 조건

✓ 일함 수 (~ 4.5 eV) 보다 에너지가 높아야 함
 ✓ 단 파장 이여야 함 - 측정 KE로 부터 유일한 BE가 정의 :
 ✓ 센 빛이 필요함 - 측정 효율
 ✓ 에너지를 연속적으로 조절하면 좋음 - kz 정보 취합
 ✓ 크기가 작으면 작을 수록 좋음 - 에너지 운동량 분해능

$$KE = \hbar\omega - \phi - BE$$

광원의 종류

Synchrotron radiation

KAIST

Gas discharge lamp (He)

광원들의 특징

	VUV Laser	Gas discharge lamp (He)	Synchrotron radiation
에너지	6, 7, 11 eV	21.2 eV	10 eV ~ 150 eV
세기 (flux)	~ 10 ¹⁵ photons/s	~ 10 ¹¹ photons/s	~ 10 ¹³ photons/s
Beam size	~ l <i>µ</i> m	> 100 µm	>10 µm
편광조절	Ο	Х	Ο
Continuous	Ο	0	Ο
Pulsed light	Ο	Х	O (4세대)
Coherency	Ο	Х	X (3세대) / O (4세대, 차세대)

Laser ARPES

결맞음 단파장 작은 빔크기 에너지가 낮다

 $KE = \hbar\omega - \phi - BE$

ΚΔΙΣΤ

높은 에너지 & 운동량 해상도 (resolution)

Laser ARPES 결맞음 단파장 작은 빔크기 에너지가 낮다

Bulk sensitive!!

저차원 물질만 측정 용이

Limited momentum range

(Laser based) Time resolved ARPES

ΚΔΙΣΤ

M. Neupane et al., PRL 115, 116801 (2015)

Nano-ARPES

50 µm

nanoARPES breaks the limit of materials that can be studied by ARPES

Taken from Prof. K. S. Kim's presentation

Nano-ARPES

Optical microscope

nanoARPES

Magnified view

Excellent momentum resolution!

Taken from Prof. K. S. Kim's presentation

nanoARPES spectra

light engineering - vortex light

$$M(k) = \langle f | \vec{A} \cdot \vec{p} | i \rangle = \langle f | \vec{e} \cdot \vec{r} | i \rangle$$

dipole transition **△m=0,+1**, -1

spin angular momentum of light (polarization)

m= -1,0,1

KAIST

orbital angular momentum of light (chirality of wave front)

m=-3,-2,1,0,1,2,3,....

22.07.14 가속기 스쿨

심화 - ARPES technique 리뷰

시료의 조건, 종류

✓ Crystal axis 가 유일하게 정의되어야 함
✓ <u>단결정 (single crystal),</u>
✓ <u>에피 박막 (epitaxial thin film)</u>
✓ <u>2D flake</u>
✓ 전기전도도가 있어야함
✓ Metal (good)
✓ Semiconductor & insulator (possible)
✓ 표면이 원자 수준으로 깨끗해야함
✓ Cleaving
✓ Cleaning (Sputtering, annealing, flashing)

The weakness of ARPES

⊠Unique crystal axis

 \checkmark Number of systems is limited

 \checkmark limited choice of control parameter

 $\checkmark \text{ARPES}$ is too much direct

Doping Pressure Temperature Magnetic field Electric field ⊠Must be clean!!!

표면전자도핑

Fermi arc & d-wave node from insulator

Y. K. Kim et al., Nature Phys. 12, 37-41 (2016)

Y. Zhang et al., Nat. Nano. 9, 111 (2014)

KAIST

J. Kim *et al.*, Science **349**, 723-726 (2015)

단축 압력 인가

압력 인가를 활용한 연구 결과

Distorting the local lattice

Symmetry breaking

Strain induced metal-insulator transition in Ca2RuO4

Berry curvature dipole induced by strain

22.07.14 가속기 스쿨

심화 - ARPES technique 리뷰

전자 분석기 구성 요소

electron lens + electron prism + electron detector

Electron lens - k-PEEM

https://www.pro-physik.de/sites/default/files/2019-05/PB_2019_24_27.pdf

Electron Prism - Time of Flight

D. Kühn et al., J. Electron Spectrosc. Relat. Phenom. 224, 45-50 (2018)

Electron Detection - spin resolving

기본 측정방법

광전자의 spin 정보 측정

Ferromagnet (Fe)

Spin-resolved ARPES

Rashba state on Au(III) surface

주의: 항상 같다는 보장이 없음

정리

國 각분해능 광전자 분광의 기초 √광전효과- 각분해능? *↓ 관측법 및 관측결과를 전자구조로 매핑 하는 법 ↓ 기본 데이터 읽는 법*

♂심화 - ARPES로 얻을 수 있는 정보 Intensity에 숨겨진 정보

 \checkmark light polarization dependence

√Electron self energy info. in ARPES spectrum

♂심화-ARPES 기법리뷰

√*빛* √샘플

√ 전자 분광 및 검출

Thank you for your attention

More discussion on A(k, *w*)

$$I(\mathbf{k}, E_{kin}) = \sum_{f,i} w_{f,i} \approx |M(k)|^2 A^-(k, \omega) f(\omega)$$
$$A^{\pm}(\mathbf{k}, \omega) = \sum_m |\langle \Psi_m^{N\pm 1} | c_{\mathbf{k}}^{\pm} | \Psi_i^N \rangle|^2 \delta(\omega - E_m^{N\pm 1} + E_i^N)$$

√N-I particle systems 이 photo-hole 의 존재를 어떻게 느끼는가? √Photo-hole 이 형성되면 주변과 어떻게 상호작용하면서 decay 하

Information built in spectra

$$A(\omega - \omega') = \frac{1}{\pi} \frac{\Gamma}{(\omega - \omega')^2 + \Gamma^2} = \frac{1}{\pi} \operatorname{Im} \frac{1}{\omega - \omega' + i\Gamma} = \frac{1}{\pi} \operatorname{Im} G_0(\omega - \omega')$$

$$A(\mathbf{k}, \omega) = \frac{1}{\pi} \operatorname{Im} \frac{1}{\omega - \epsilon_{\mathbf{k}} + i\Gamma} = -\frac{1}{\pi} \operatorname{Im} G_0(\mathbf{k}, \omega)$$

Green's function

Interaction information built in the self-energy

$$\Sigma(\mathbf{k},\omega) = \Sigma'(\mathbf{k},\omega) + i\Sigma''(\mathbf{k},\omega) = \Sigma_{imp} + \Sigma_{e-ph} + \Sigma_{e-e}$$

$$A(\mathbf{k},\omega) = -\frac{1}{\pi} \operatorname{Im} G(\mathbf{k},\omega) = -\frac{1}{\pi} \frac{\sum''(\mathbf{k},\omega)}{[\omega - \epsilon_{\mathbf{k}} - \Sigma'(\mathbf{k},\omega)]^2 + [\Sigma''(\mathbf{k},\omega)]^2}$$

Example: e-e interaction

S. Kim et al., under review

Example: e-phonon interaction

ΚΔΙΣΤ

More on M(k): three-step vs. one-step model

