

순서	
 (1) 방사광원 리뷰 -방사광가속기 목적 -방사광원 종류 (2) 방사광 활용 원리 -X-선 및 light matter interaction (3) 빔라인 기능 및 구성 개념 (4) 빔라인 구성 요소 디테일 -X-선 광학계 -빔라인 설계 -단색분광기 -빔라인 구성 예 -검출장치 	

(3,4) 빔라연	인 기능 및 구성 개념	
	순서	
	 (1) 방사광원 리뷰 -방사광가속기 목적 -방사광원 종류 (2) 방사광 활용 원리 -X-선 및 light matter interaction (3) 빔라인 기능 및 구성 개념 (4) 빔라인 구성 요소 디테일 -X-선 광학계 -빔라인 설계 -단색분광기 -빔라인 구성 예 -검출장치 	

빔라인 기 XBO borr	능요	오소 디테일: x-ray property in material	
	iepa		
ransmissio	on th	rough a thin film	
\leftrightarrow \rightarrow C' \triangleq he	nke.lbl.go	v/optical_constants/	
		Tell us what else you wish this tool could do! We want to make this tool even more capable and useful to you so let us know how it can be improved.	
X-Ray Database	0		
Nanomagnetism	0	V Boy Interactions With Matter	
X-Ray Microscopy	0	X-Ray interactions with Matter	
EUV Lithography	0		
EUV Mask Imaging	0	Introduction	
Reflectometry	0	Access the atomic scattering factor files.	
Zoneplate Lenses	0	The index of refraction for a compound material.	
Coherent Optics	0	The x-ray attenuation length of a solid.	
Nanofabrication	0	X-ray transmission	
Optical Coatings	0	Of a solid.	
Engineering	Ø	• Of a gas. X-ray reflectivity	
Education	0	Of a thick mirror.	
	0	Of a single layer.	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 design pa	aramete	ers						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r doorgin pu								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ı energy (e)		2.5 GeV						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ength (λ _u)		7 cm						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	of period (N)		61						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tal emittance (ε _x)		18.9 nm	rad					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	emittance (sy)		0.189 nm	n rad					
^b y beam current (I) number of bunch repetition rate pulse width of each bunch mumber of bunch repetition rate pulse width of each bunch			10 m						
beam current (I) number of bunch repetition rate pulse width of each bunch shape coating material substrate tangential radius of curvature (m) south a classical content of the state of the sta			4 m						
number of bunch repetition rate pulse width of each bunch 250 1 MHz 17 ps M1 Mp G Mf Mv Mh1 Mh2 shape coating material substrate incidence angle (degres) tangential radius of curvature (m) somitized and some for the state of the st	irrent (I)		0.2 A						
matrix 1 MHz pulse width of each bunch 17 ps M1 Mp G Mf Mu Mh2 shape toroid plane plane cylinder cylinder cylinder substrate Glidcop Si Si Glidcop Glidcop Glidcop incidence angle (degrees) 2 variable 2 3 2 tangential radius of curvature (m) 11054.47 infinite infinite 341.2 26-37 190-3000 55-100	of bunch		250						
M1 Mp G Mf Mu Mh1 Mh2 shape toroid plane plane cylinder cylinder cylinder cylinder shape toroid plane plane cylinder cylinder cylinder substrate Glidcop Si Glidcop Glidcop Glidcop Glidcop Glidcop Glidcop Glidcop Glidcop Si Glidcop Glidcop Si Si Glidcop Glidcop Si Si Glidcop Si Si Si Glidcop Si	on rate		1 MHz						
M1 Mp G Mf Mv Mh1 Mh2 shape toroid plane plane cylinder cylinder cylinder cylinder coating material Au	idth of each bunch		17 ps						
M1 Mp G Mf Mv Mh1 Mh2 shape toroid plane plane cylinder cy									
shape toroid plane plane cylinder cylinder cylinder cylinder coating material Au	М	M1 Mp	G	Mf	Mv	Mh1	Mh2		
coating material Au	shape tor	oroid plane	plane	cylinder	cylinder	cylinder	cylinder		
incidence angle (degrees) 2 variable variable 2 2 3 2 tangential radius of curvature (m) 1054.47 infinite infinite 341.2 26-37 190-3000 55-100 sagittal radius of curvature (m) 1156.	coating material Au	Au Au	Au	Au	Au	Au	Au		
tangential radius of curvature (m) 1054.47 infinite infinite 341.2 26-37 190-3000 55-100	substrate Gli	flidcop Si	S1	Glidcop	Glidcop	Glidcop	Glidcop		
sagittal radius of curvature (m) 11536	al radius of curvature (m) 10/	054 47 infinite	infinite	341.2	26-37	190-3000	55-100		
	radius of curvature (m) 11	1536							
tangential slope error (µrad) 15 0.5 0.5 0.5 3 5.5 14	ntial slope error (µrad) 15	5 0.5	0.5	0.5	3	5.5	14		
sagittal slope error (µrad) 6	ttal slope error (µrad) 6								
surface roughness (nm) 1.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0	face roughness (nm) 1.0	0 0.5 20 x 50 756 x 35	0.5 150 x 55	0.5 700 x 50	0.0 70 x 20	0.5 200 x 20	0.0 200 x 20		
clear aperture (mm x mm) 320 x 30 730 x 33 130 x 33 700 x 30 70 x 20 200 x 20	r aperture (mm x mm)	20230 750255	150 x 55	700 X 30	70 A 20	200 A 20	200 x 20		
Line density (lines/mm) Groove depth (nm) Photon energy (eV)	Line density (lines/mm)	m) Groove de	oth (nm)	Pł	noton ene	røv (eV)			
60 150 30-75	60	150		30-75					
120 50 70-190	120	50	70-190						
400 17 190-500	400	17		19	0-500				
1100 6.5 500-1400	1100	6.5		50	0-1400				
2000 4 1000-2000	2000	4		10	00-2000				
	<u>(</u>								
H J Shin J Korean Phys. Soc. 34, 350				HUS	hin I I	Korean	Phys Soc	34 350-358	(1

