2022 가속기 및 빔 라인 미래인재 양성 여름학교 -중이온가속기 가속장치-

김종원 중이온가속기연구소, 기초과학연구원 2022년 7월 13일

입자가속기 분류

Acceleration field

- Electrostatic field \rightarrow DC accelerator (i.e. Cockcroft- Walton, Tandem,)
- Time varying electric field \rightarrow RF accelerator (cyclotron, rf linac, synchrotron,...)

Particle species

- $e \rightarrow electron accelerator$
- $p \rightarrow proton accelerator$
- heavy ion, hadron (Z \geq 1), molecules \rightarrow heavy ion accelerator

Accelerator shape

- Circular \rightarrow Synchrotron, Cyclotron, (Microtron)
- Linear \rightarrow Drift tube (Alvarez), Widroe ٠

Superconducting accelerator Sc-Cyclotron \rightarrow superconducting magnet Sc-Linac \rightarrow superconducting rf cavity Sc-Synchrotron? \rightarrow superconducting magnet or rf?

Cockcroft-Walton

generator

- 1. Cyclotron
- 2. Linear accelerator (Linac)
- 3. Synchrotron
- 4. Isotope beam production with hadron beam
- 5. Use of hadron beams
- 6. Sustainable accelerators (with SRF technology)

1. Cyclotron

 $\omega = \frac{qB}{m}$

m

- Concept: EO Lawrence (1929):
- Proof of acceleration: MS. Livingston (1931): proton 80 keV
- Limitation in increasing energy with fixed frequency by the theory of relativity (limit :20-25 MeV)

valley

Modern cyclotron • Isochronous field: $B = \frac{Am}{q} \frac{1}{\sqrt{1 - \left(\frac{\omega_0}{2}\right)r^2}}$ Vertically defocusing defocusing! Thomas focusing (sector focusing, 1938) $B_{z} = B_{0}(1 - f \sin \theta)$ $v_{r} = \omega r_{0} f \cos \theta$ $B_{\theta} = z \left(\frac{\partial B_{\theta}}{\partial z}\right)_{z=0} + \dots$ $V_{z}^{2} = n + \frac{N^{2}}{N^{2} - 1} F (1 + 2 \tan^{2} \xi)$ Azimuthally Varying Field (AVF) B (B)f (B) 8. Bh K value of heavy-ion cyclotron Be $\frac{E}{A} = K(\frac{q}{A})^2$ (MeV/u), kinetic energy of ions, bending limit Spiral angle Sout valley

Longitudinal motion

In reality, no ideal magnetic ____ *Energy spread in the beam* field means **phase excursion**

Harmonic motion

$$\omega_{rf} = h\omega = h \left(\frac{Q}{A}\right) \left(\frac{e}{m_a}\right) B$$

h: harmonic numberω: rotation frequency of ion

A 70 MeV proton cyclotron of IBS (compact cyclotron)

Installed and under beam commissioning (July, 2022)

Isochronized magnetic field and its error

Characteristics of the 70 MeV Cyclotron

RF system of 70 MeV cyclotron

LLRF \rightarrow Solid State Amp. (5 kW) \rightarrow Final Power Amp. (100 kW)

Separated-sector 590 MeV proton cyclotron at PSI (Switzerland)

I: > 2 mA (world highest power CW accelerator)

- First proposed by Hans Willax (1962) for the Swiss meson factory a 590-MeV proton ring cyclotron
- * In separate-sector cyclotrons:
- > sectors have individual yokes & coils
- > the valleys are magnetic field-free
- available for rf, injection, extraction & diagnostic
- * Small pole gaps need less amp-turns
- give hard-edge fields
- the flutter, F² = H⁻¹- 1 can reach ~1

(where H = hill fraction),

- Makes possible β©<1 (~400 MeV/u) with radial sectors).</p>
- * Needs a medium-energy injector

-Spallation neutron source -Muon production

High efficiency (~40%) Very low losses (0.01%) Cavity voltage: ~900 kV Extraction efficiency: 99.99%

PSI facility layout

TRIUMF (Canada) 520 MeV H⁻ Cyclotron

 $v_z^2 = n + \frac{N^2}{N^2 - 1}F(1 + 2\tan^2\xi)$ Spiralling is now used for most isochronous cyclotrons over 40 MeV and has enormously increased the energies attainable with highcurrent cw beams:

- TRIUMF: 70 - 520 MeV H⁻, 250 μ A (\rightarrow 450 μ A);

- providing 1000× more intense beams for π , μ , n & RI production;

Superconducting ring cyclotron (SRC) at RIKEN

Cold mass: 142 tons (Stainless steel: 101 tons, Aluminum: 41 tons)
 → 3 weeks to cool down to 4.5 K

RIBF (RI Beam Factory) at RIKEN

MeV

Heavy ion beam acceleration at RIBF

From H. Okuno, Snowmass Workshop (Aug. 2021)

Synchro-cyclotron

• For B = constant, to maintain synchronism

 $f_{\rm rf} \sim 1/\gamma(t)$

The energy for an ion of charge Z follows from

Ex: Lawrence's 184-in cyclotron $R_{max} = 2.337 \text{ m}$ B = 1.5 T $M_{voke} \approx 4300 \text{ tons !!}$ 1946 \rightarrow 1987

But this requires pulsed rather than CW operation (one bunch in the machine at a time)

==> Average current is reduced by the number of turns to full energy (\sim 1000x) to \sim 0.1 μ A

Superconducting synchro-cyclotron for proton therapy (2009) Accelerators shrink to meet growing demand for proton therapy

Smaller, cheaper accelerators promise to make proton radiation therapy available to more cancer patients.

The recent wave of newly constructed medical centers dedicated to proton radiation therapy comes as no surprise to James Slater, a radiation oncologist at Loma Linda University Medical Center. By 2010, four new US centers will start treating cancer patients. With two others that opened in 2006, that's more than double the number that had existed in the US in the first 15 years after Slater led the Southern Califomia medical center in building the first hospital-based proton center in 1990. "I expected [this growth] to happen much sooner," he says.

In what may promise even more growth, some physics research labs and small companies are now developing room-sized proton accelerators to bring the treatment to existing medical centers. Those companies say their technology will supply a single treatment room g for less than \$30 million, a fraction of the \$100 million to \$200 million it now takes to build and equip larger proton centers. Treatments such as x-ray radiation and chemotherapy are still more available to cancer patients and less expensive than proton therapy. But x rays harm healthy tissue, and chemotherapy drugs weaken the immune system, among other things. Of late, many patients have been opting for proton therapy because of its minimal side effects when compared with the other treatments.

"Heavy lifting"

Protons penetrate human tissue to depths proportional to the incident energy, which for proton therapy ranges from 100 to 300 MeV. Because they have a relatively high mass, protons deliver

Still-river \rightarrow Mevion Medical Systems

~20 tons

2. Linear Accelerator

• Widroe linac (Sloan-Lawrence structure, Interdigital structure)

Interdigital structure

• Alvarez (DTL, drift tube linac) $\rightarrow \beta \lambda$ mode or 2π mode

• Coupled Cavity Linac (CCL)

- Linear array of resonant cavities
- $0.4 < \beta < 1$, TM₀₁₀-like standing-wave
- two gaps per $\beta\lambda$
- Good in 90-180 MeV (max. duty-cycle 10-15 %)

A typical layout of ion linac

Ion Source Basics

- 1. Proton: Plasma source, PIG (Penning Ion Gauge), ECR (Electron Cyclotron Resonance), multi-cusp ion source (H⁻)
- 2. Heavy ion: ECR

The ion source (better: ion gun!) is composed of

- A plasma source (generator): to provide ionized particles.
- An acceleration system ('extractor') to bring particles up to speed *and* to form a particle beam.

ECR Ion Source for high current in highly-charged states

 \rightarrow rf freq. increase: 14 GHz \rightarrow 18 GHz \rightarrow 30 GHz

Radiofrequency quadrupole (RFQ)

Ion accelerator which can both accelerate and focus with rf fields

- •Used for low velocity particles (0.01 < β < 0.06) \rightarrow Sloan-Lowrence structure
- -Invented by I.M. Kapchinsky and Vladimir Teplyakov (1960's): Lenin Prize in 1988 -first demonstrated by LANL (75 mA, 600 keV in 1990)

RFQ potential

$$\nabla^2 \phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \phi^2} + \frac{\partial^2 \phi}{\partial z^2} \right)$$

Use two term potential

$$\phi = \frac{V}{2} \left[\sum_{n=0}^{\infty} A_{n0} r^{2n} \cos 2n\theta + \sum_{n=0}^{\infty} \sum_{l=1}^{\infty} A_{nl} r^{2n} I_{2n}(lkr) \cos 2n\theta \cos lkz \right]$$

 $= \sim \frac{V}{2} \Big[A_{10} r^2 \cos 2\theta + A_{01} I_{20}(kr) \cos 2\theta \cos kr \Big]$

$$E_{r} = -\frac{\partial \phi}{\partial r} = -VA_{10}r\cos 2\theta - \frac{Vk}{2}A_{10}I_{21}(kr)\cos kz$$
$$E_{\theta} = -\frac{\partial \phi}{r\partial \theta} = VA_{10}r\sin 2\theta \qquad \mathbf{T}_{210} : \text{quadrupole electric field}$$
$$E_{z} = -\frac{\partial \phi}{\partial z} = \frac{Vk}{2}A_{01}I_{20}(kr)\sin kz$$

RFQ vanes, field polarity and modulation parameters

RFQ structures

1. 4-vane structure

LANL, LEDA, 100mA,CW 350 MHz INFN, Trasco (p): 352.2MHz SNS: 402.5 MHz

2. 4-rod structure for heavy ions

3. IH structure

GSI-HIS RFG

Resonator, cavity

- Transform high current & low voltage (low imdepance) to high voltage & low current (high imdedance), and matches with a beam to transfer power
- Volume enclosed by metal wall that supports an electromagnetic oscillation Electrical field: acceleration Magnetic field: inductive isolation (cavity is a short circuit)

single-turn inductor

RF power supplies

First, main high power RF circuit and cavity responses without beam.

Electric fields in quarter wave resonator (QWR)

Phase

= 0 degrees

Different cavity (resonator) structures for different β

Figure of merit for cavity

Shunt impedance per unit length r: is a measure of the accelerating quality of a structure

Shunt impedance
$$R_a = \frac{V_c^2}{P_c} \longrightarrow \text{To get maximum acceleration,} maximize shunt impedance}$$

Measure of how much acceleration one gets for a given power dissipation

Superconducting proton linac for spallation neutron source

Warm cold transition for recent linac designs

CEEN accelerators for heavy-ion collision

Linac3 (Pb,..) & Linac4 (H-) at CERN

Layout of Linac3

14.5 GHz ECR ion source

Linac4 begins with the hydrogen source, followed by the radio-frequency quadrupole (RFQ), chopper, drift-tube linac (DTL), cell-coupled DTL (CCDTL) and finally a Pi-mode structure (PIMS).

The Linac4 radio frequency quadrupole, mage credit: M Vretenar

Charge stripping in heavy ion accelerators

Successfully commissioned at FRIB in Michigan State Univ. 2020

3. Synchrotron (pulsed beam)

Working principle

Working principle

High power high-intensity synchrotrons worldwide

	Energy	Radius	Rep. rate	Power	Particles /cycle	Application	Remarks	_
ISIS, UK	0.8 GeV	168 m	50 Hz	0.16 MW	3x10 ¹³	Neutrons, muons	RCS	
J-PARC RCS, Japan	3 GeV	348 m	25 Hz	1 MW (design)	4x10 ¹³ (design)	Injector for MR, Neutrons,	RCS, 0.3 MW	p
J-PARC MR, Japan	50 GeV	1567 m	0.3 Hz	0.75 MW (design)	4x10 ¹⁴ (design)	Neutrinos,		
CERIN PSB	1.4 GeV	157 m	1 Hz	1.5 KW	(4x) 2x10 ¹²	LHC injector chain	4 rings	1
CERN PS	26 GeV	630 m	0.3 Hz	25 kW	2x10 ¹³	LHC injector chain		
AGS BNL Booster	1.5 GeV	202 m	7.5 Hz	45 kW	2.5x10 ¹³	RHIC injector chain	p-Au	E
AGS	24 GeV	807 m	0.5 Hz	130 kW	7x10 ¹³	RHIC injector chain	p-Au	
SIS-18, GSI	1 GeV/u	216 m	3 Hz	4 kW	10 ¹⁰ Uranium	Injector for SIS-100, RIBs	p-U	1
SIS-100, GSI	2.7 GeV/ u	1080 m	1 Hz	50 kW	5x10 ¹¹ Uranium	RIBs, pbars	p-U, sc magnets	

RCS: Rapid Cycling Synchrotron (> 10 Hz)

HI

FAIR (Facility for Antiproton and Ion Research) at GSI

Fast ramping dipole magnets

Large apertures

SIS-18 dipoles: 20 cm x 8 cm J-PARC RCS: 25 cm x 19 cm

Ramping rates (Bdot):

SIS-18 dipoles: 10 T/s J-PARC RCS dipoles: 40 T/s

Max. B-Field

SIS-18: 1.9 T

J-PARC RCS: 1.1 T

SIS-100 superferric dipole:

13 cm x 6 cm Bdot = 4 T/s B_{max}= 2 T pipe at 20 K

Fast ramping 'cold' magnet of the nuclotron-type

Fast ramping (3 Hz) SIS-18 dipoles

J-PARC RCS (25 Hz) dipole

RF cavities for synchrotrons

- broadband: no tuning required $Q \lesssim 2$ $\mu \approx 1000$
- compact cavities (important for rapid cycling rings)
- larger losses

Beam intensities of SIS-18 synchrotron for different ions

Space charge tune spread

(text books)

$$\Delta Q_y^{sc} \propto -\frac{q^2}{m} \frac{N}{B_f} \frac{g_f}{\varepsilon_y \beta_0^2 \gamma_0^3} \frac{2}{1 + \sqrt{\varepsilon_y / \varepsilon_x}}$$

'Space charge limit': $\left| \Delta Q_y \right| \lesssim 0.5$

g_f: Transverse profile (Gauss: 2, homogenous: 1) B_f < 1: bunching factor $\varepsilon_{x,y}$: transverse emittances N: number of particles in the ring q: particle charge m: particle mass

Injection energy: 11.4 MeV/u (β_0 =0.155), Emittances: $\epsilon_{x,y} = 150 / 50 \text{ mm mrad}$

Injection tune shifts from achieved intensities in SIS-18

Injection: Bunch to bucket

Kicker: fast dipole magnet with a rise time of 10-100 ns and a pulse duration of μ s.

4. Isotope beam production with hadron beam

Comparison of the two methods

	A	
	IF	ISOL
Primary Beam	Heavy (U,)	Light (p, n, d)
Target	Low Z (Be, C.,,)	High Z (U,)
Separation Time	Short	Long
RI beam energy	Relying on primary beam	Reacceleration

Two major nuclear mechanisms of IF

Rare isotope beam capabilities worldwide

High power facilities (> 50 kW)

Japan: RIKEN RIBF (IF) USA: MSU FRIB (IF) Germany: GSI FAIR (IF) Canada: TRIUMF ISAC, ARIEL(e linac) (ISOL) France: GANIL SPIRAL2 (ISOL) Green: under construction

Principle of IF separator

In-flight fragment separator in other facilities

FRIB (Facility for Rare Isotope Beams) user operation from 2022

Beam commissioning at FRIB (2017 ~ present)

210 MeV/u ³⁶Ar¹⁸⁺ Beam Envelope in ARIS

5. Use of hadron beams

(RIKEN, GSI,..)

Stable ion beams

- 1. Nuclear and astrophysics
- 2. Neutron science (p)
- 3. Applications:
 - multi-tracer: isotope production for radiation biology
 - mutation of plant seeds. \rightarrow accelerated evolution by radiation
 - ion implantation (HTc superconductor, etc..)

Isotope beams

- 1. Synthesis of neutron-rich transactinide nuclei, which are more strongly bound and longer-lived.
- 2. Reliable models of astrophysical environments that describe nuclear synthesis and stellar evolution in the cosmos.
- 3. Development of applications to new nuclear technologies for material science, medicine, and bio/nanotechnology.

입자 빔의 생의학 및 산업적 이용

- 1. 양성자 Isotope production Radiation therapy
- 2. 중이온 (A>2)

Ion implantation Ion beam analysis, Radiation therapy Microbeam (precision beam), Lithography Accelerator Mass Spectrometry (AMS) (use DC machine)

3. 중성자

Radiography, radiotherapy

National Security (chemical warfare, special nuclear material, explosive detection)

Uses	Accelerator	No of units in operation	Annual unit increase	Annual sales (억원)
Radiotherapy (e)	electron linac	8000	400	7000
Radiotherapy (p, ¹² C)	cyclotron, synchrotron	25	2-3	600
Isotope production (p)	cyclotron, hadron linac	250	15	300

Commercial markets of biomedical accelerators (2007)

Biomedical uses of hadron beam

Ⅲ. 중이온 빔 생물조사

Physical parameters of ion beams in JAERI

Radiation	Energy (MeV)	LET (keV/µm)	Penetrating depth (mm)
${}^{4}\mathrm{He}^{2+}$	50	16	1.7
${}^{4}\text{He}^{2+}$	100	9	6.2
$^{12}C^{5+}$	220	107	1.1
$^{12}C^{6+}$	320	76	2.2
²⁰ Ne ⁸⁺	350	316	0.6

Physical parameters of ion beams in RIKEN

Radiation	Energy		LET	
	MeV/u	MeV	(keV/µm)	
$^{12}C^{6+}$	135	1620	22, 39, 99	
²⁰ Ne ¹⁰⁺	135	2700	64, 107	
$^{40}Ar^{17+}$	95	3800	305	
${}^{56}\mathrm{Fe}^{24+}$	90	5040	630	

핵의학동위원소 생산 (PET, SPECT, for theranostics,..)

30-70 MeV H⁻ Cyclotron (IBA)

Advanced Radioisotopes for theranostics

⁶⁷Cu (therapy+diagnostic applications)
⁴⁷Sc (PET + radionuclei therapy)
⁸²Sr/⁸²Rb (heart function)

양성자를 이용한 방사선 치료 (70-250 MeV)

Bethe-Block formula

$$-\frac{dE}{dx} = 2\pi r_e^2 m_e c^2 N_{el} \frac{Z_h^2}{\beta^2} \left[\ln \frac{2m_e \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 (1 + \frac{T_c}{T_{\text{max}}}) - \delta - 2\frac{C_e}{Z} \right]$$

Zh: 입사빔의 유효 전하, re: 고전적 전자 반경, Nel: 전자 밀도, δ: 보정항, Ce/Z: shell 보정항.

Superconducting cyclotron (PSI, Switzerland) \rightarrow Varian Inc. Europe

J. Kim, Magnetic fields and beam optics studies of a 250MeV superconducting proton radiotherapy cyclotron, NIM A 2007

국립암센터 & 삼성병원 양성자치료시설

삼성서울병원,양성자 치료 지속 증가, '소아암' 최다 ('22,1월)

Hadron beam therapy facilities I

Hadron beam therapy facilities II

6. Sustainable accelerator with SRF technology

Two talks in APS meeting, April, 2022

SRF Cavity Development for Lower Cost and Sustainable Accelerators

SA

Motivation – electricity consumption

Ben Shepherd • Sustainable Accelerators • APS April Meeting 2022

CLIC: Compact LInear Collider

CLIC power consumption estimates

- CERN, e-positron collider
- 3 stages: 380 GeV, 1.5 TeV, 3 TeV

CURRENT SRF TECHNOLOGY FOR ACCELERATORS

SRF Cavity Development for Lower Cost and Sustainable Accelerators, A.-M, Valente-Feliciano, APS April Meeting 2022

New SRF cavity development and compact accelerator for application

Thin Film Superconducting RF

- Bulk niobium cavities have been the choice for SRF for the last 50 years
- Use a considerable amount of natural material
- Performance limit of niobium has been reached
- Costly to produce
- Run at a temperature of 2 K
 - A considerable cryogenic demand and energy load

Increase efficiency & lower cryogenic losses

A. Grassellino et al. Supercond. Sci. Technol 26.10 (2013): 102001. Ito, H., et al. Progress of Theoretical and Experimental Physics (2021) 071G01 D. Gonnella, Daniel, et al. Proceedings of IPAC2016, Busan, Korea (2016). Lechner, E., et al. Appl. Phys. Lett. 119, 082601 (2021)

2-4 times more efficient

O Alloying

Q-factor x2 or more resulting in cavity-cooling electricity bills slashed by up to 4 times

SRF Cavity Development for Lower Cost and Sustainable Accelerators, A.-M, Valente-Feliciano, APS April Meeting 2022

Eacc [MV/m]

LOW COST & SUSTAINABILITY FOR ACCELERATORS

<section-header>

Jefferson Lab

ISIS Neutron and Muon Source (Rutherford Appleton Laboratory) pulsed neutron and muon source, operation in 1984

	isis chergy consumpt	.1011	
ISIS-I Mode	Energy Total	2017 Baseline CO ₂ Equivalent tonnes per annum	2020 CO ₂ Equivalent tonnes per annum
240 Day 5 cycle plus Machine Physics & Start Up	64.5 GWh/annum	22,700	16,300
90 Days Long Shutdowns	13.4 GWh/annum	4,700	3,400
35 Days Short Shutdowns	7.2 GWh/annum	2,500	1,800
365 Operation	85.1 GWh/annum	29,900	21,500 -8,400
ISIS-II			and and a second se
240 Day 5 cycle plus Machine Physics & Start Up	172.7 GWh/annum	60,700	43,700
90 Days Long Shutdowns	35.9 GWh/annum	12,600	9,100
35 Days Short Shutdowns	19.3 GWh/annum	6,700	4,900
365 Operation	227.9 GWh/annum	80,000	57,700 - 22,300
 is just the electrical energy that we use in running to the carbon footprint asso With carbon lifecycle assessments. Materials for new accelerator components or Our Business as usual activities. The ISIS facility is a particle accelerator It will never have a low carbon footprint This does not mean we can ignore that footprint 	The ISIS facility is a particle accelerator It will never have a low carbo This does not mean we can in We cannot rely on the green to reduce our footprint.	on footprint gnore that footprint. ing of the electricity supply	

2017 Baseline UKRI GOV.UK conversion factor Electricity 1kWh = 0.35156 kgCO₂e 2020 UKRI GOV.UK conversion factor Electricity 1kWh = 0.25319 kgCO₂e

Efforts are essential to utilize new technologies and to make accelerator system more compact & economical.