

2022 가속기 및 빔 라인 미래인재 양성 교육단 여름학교

4GSR Beam Diagnostics

Korea University Siwon Jang

Accelerator facility in the world

Storage ring and free-electron laser x-ray light sources of the world. Source: APS Science 2014 (https://doi.org/10.2172/1224995)

Accelerator facility in the world

Accelerator facility in the world

4GSR project of Korea at Ochang

High brilliance → Small beam size → Precise & stable orbit control (sub µm resolution)

"For the fourth generation storage ring, it's more precise, more accurate, and fast processing beam diagnostic devices are required.

Introduction

- 가속기 연구 개발 또는 빔 진단 장치 연구?
- 방대한 연구 주제 광대한 복합 연구 개발 기술이 요구 됨
- 필요한 연구 분야 및 관련성:
 - Accelerator physics particle physics RF technology optics mechanics – electronics – software engineering – ...
- 극한의 연구 환경:
 - Radiation (SEE, radiation ageing, activation)
 - Many sources of measurement noise and background
 - Place readout close to detector, but -> radiation
 - RF heating by the beam
 - Accessibility and maintenance
 - Sometimes: cryogenic temperatures
 - Mostly: must operate in vacuum and be UHV compatible

Introduction

- 가속기 빔 진단 장치의 필요성:
 - 빔 운전을 보조하는 시스템이며, 가속기 튜닝 및 운전에 사용되고 전체 시스템의 성능
 향상을 위한 장치이다.
- 빔 진단 장치 개발을 위한 고려:
 - **선형가속기 및 전송라인**: Single pass ↔ **저장링**: multi pass
 - 전자: almost relativistic (β~1) ↔ 양성자/중이온: non-relativistic for Ekin < 1 GeV/u
 - 전체 빔 에너지 (beam particles x particle energy) low ↔ high
 - 다양한 주파수 대역
 - DC beam or bunched beam additionally fill pattern
 - Non-intercepting ↔ Intercepting ↔ Destructive
- 무엇을 배울 것인가?
 - 왜 빔 진단 장치가 필요한가?
 - 가속기의 대표적인 5가지 빔 진단 파라미터 및 대응되는 주요 장치
 - 빔 위치 모니터 및 일렉트로닉스의 원리
 - **Cavity BPM의 개발부터 측정까지

• 왜 가속기는 설계한 대로 동작하지 않는가?

• 왜 빔 진단 장치가 필요하지?

• 왜 가속기가 발전함에 따라 더욱 많은 빔 진단 장치가 요구되는가?

빔 진단 장치가 필요한 6가지 대표적인 이유!

- Component tolerances and related random errors
- Environmental effects
- Equipment fault
- *Equipment set-up*
- Performance tuning and preservation
- Stupid things (Human error)

Component tolerances and related random errors

- Finite precision of survey and alignment
- Finite accuracy of power supplies
- Ripple of power supply
- Finite accuracy of magnet field measurement
- Ripple of RF Amplitude
- RF phase noise
- Drifts (temperature, humidity, aging of component)

Component tolerances and related random errors

	Dipole	Quadrupole	Sextupole		
	s 11111 N	N S N	s) N S GO		
purpose	beam deflection & sometimes focusing	beam focusing	chromatic correction		
unwanted, but some how predictable side effects	sextupole component modifies chromaticity reduces acceptance	dodecapole component (usually negligible)	limits dynamic acceptance		
effect of excitation errors and ripple	generates orbit errors and chromaticity devi ations	generate tune errors	generate chromaticity errors		
most critical alignment issues	roll angle generates ver tical orbit excursions an d spurious vertical disp ersion	transverse shifts ge nerate orbit excursi ons and spurious di spersion roll angle generates x, y coupling vertical shift destroys beam polarisation	vertical displacement g enerates x,y coupling horizonal displacement generates tuneshift		

Environmental effects

• Subsiding of building(PLSII...)/tunnel foundation

- Mechanical vibrations induced by water flow, vacuum pumps, water pumps, ventilation
- Mechanical vibrations from nearby traffic or construction work
- Earth quake vibrations (KEK, J-PARC in JAPAN)
- Earth magnetic field
- Magnetic fields from electric currents induced on vacuum chamber
- Stray fields from permanent magnets in vacuum pumps and vacuum gauges
- Field distortions from magnetic materials in support structures, building and equipment
- Magnetic stray field from cables

Stupid things (Human error)

Stupid things (Human error)

Stupid things !

- 8 magnets connected with wrong polarity
- 🙁 cables connected to wrong equipment
- 🙁 wrong entries in control system database
- 🙁 calibration values mixed up
- 🙁 "nominal settings" from wrong optics file
- 🙁 kicker mounted in wrong direction
- Somebody stepped on beampipe to change neon tube
- 😕 beer bottles in vacuum chamber

 $(\tilde{\boldsymbol{\kappa}})$

Stupid things (Human error)

Stupid things ! True or False?

http://blogs.nature.com/news/2009/11_a_tale_of_two_beer_bottles_1.html

Stupid things !

Zoom sur Quadrupole

Zoom sur Quadrupole beer bottle 28 th November 2019, CERN S. Myers LEP 30 Colloquium 52

10 metres to the right beer bottle Unsociable sabotage: both bottles were empty!! 28 th November 2019, CERN S. Myers LEP 30 Colloquium 53

Unsociable sabotage: both bottles were empty!!

Beam diagnostics, how much ?

Layout of an early proton synchrotron

Beam diagnostics, how much ?

CERN AC - HF267 - 04-07-1997

- 4GSR 방사광 가속기 빔 진단 장치

	<u> </u>	추 저	셀별 개수					
		70	(1)	(2)	(3)	(4)	(5)	
1	BPM (BTN, STRL)	Beam Position	3*	5*	50	6*	280	
2	BPRM (YAG/OTR)	2D Profile, Emit., Energy	5	6		7		
3	SX Diag. Hutch	Beam Size, Emit.					1	
4	VL Diag. Hutch	Beam Size, Emit., Bunch					1	
5	Compact VL IF	Beam Size, Emittance			5		28	
6	Turbo ICT (AC)	Beam Current	2	1		1		
7	NPCT (DC)	Beam Current			1		1	
8	FPM	Filling Pattern Monitor					1	
9	Streak Camera	Bunch Profile, Pattern					1	
10	New XBPM	Photon Beam Position					20	
11	BLM	Beam Loss	1		5		28	
12	E Meas.	Beam Energy (spin)			1		1	
13	Tune Meas.	Tune			1		1	
셀별 총 진단장치 개수		11	12	63	14	363		

(1) LINAC, (2) LTB(Linac To Booster), (3) BOOSTER RING, (4) BTS(Beam Transport System), (5) STORAGE RING * Single-pass 빔라인은 Button (BTN) Type 대신 Strip-line (STRL) Type BPM을 사용한다.

5가지 대표적인 빔 파라미터 및 대응 빔 진단 장치!

· 빔 위치 (Beam Position) ⇔ 빔 위치 모니터(Beam Position Monitor)
 – 궤도, 격자구조 변수들, 튠, 색수차, 빔 궤도 보정,...

Cavity BPM

Cavity BPM electronics

Button BPM

Button BPM electronics

· 빔 세기 (Beam Intensity) ⇔ 빔 전류 모니터 (Beam Current Monitor)
 – DC & 빔 번치 전류, 빔 번치 라이프타임, 번치 효율,...

Faraday cup

ACCT

5가지 대표적인 빔 파라미터 및 대응 빔 진단 장치!

- · 빔 분포 (Beam Distribution) ⇔
 빔 분포 모니터 (Beam Profile Monitor)
 수직 수평방향 및 길이 방향 빔 분포, 에미턴스,...
- · 빔 손실 (Beam loss) ⇔
 빔 전류 모니터 (Beam loss Monitor)
 DC & 빔 번치 전류, 빔 번치 라이프타임, 번치 효율,...
- · 빔 에너지 (Beam Energy) ⇔
 빔 에너지 모니터 (Beam Energy Monitor)
 선형가속기 및 저장링 빔 에너지 측정,...

VLM

Bunch Length Monitor

Current and Transmission

destructive: Faraday cup

- ▶ low energy particles stopped in material (\rightarrow Bethe Bloch)
- » very low intensities (down to 1 pA) can be measured

non destructive: current transformer

- » beam acts as single turn pimary winding of transformer
- » measuring AC component of beam current

Current and Transmission

Transformer: → measurement of the beam's magnetic field

- > Magnetic field is guided by a high μ toroid
- **Types:** FCT \rightarrow large bandwidth, $I_{min} \approx 30 \mu A$, BW = 10 kHz ... 500 MHz

[ACT : $I_{min} \approx 0.3 \ \mu$ A, BW = 10 Hz 1 MHz, used at proton LINACs]

DCCT: two toroids + modulation, $I_{min} \approx 1 \mu A$, BW = dc ... 20 kHz

non-destructive, used for all beams

Faraday cup: → measurement of beam's charge,

Iow threshold by I/U-converter: I_{beam} > 10 pA

totally destructive, used for low energy beams only

Fast Transformer FCT Active transformer ACT

Transverse Emittance

• principle

- slit produces vertical slice in transverse phase space
- measure intensity as function of x'
- ▶ moving of slit \rightarrow scan of phase space (N_x x N_x · measurements)

SEM, profile grid,...

monitor with **x**' resolution instead of scan:

 $\rightarrow N_x$ measurements

M.P.Stockli, Proc. BIW 2006, p.25

2-dimensional extension: Pepper pot

P.Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS 2006

- \rightarrow 1 measurement
 - $N_x x N_{x'}$ holes

Longitudinal Plane

- **momentum and momentum spread** dipole magnet spectrometer (small rigidity Bp) tran
 - sformation of momentum (spread)
 - into position (spread)
 - spatial resolving detector (screen, SEM,...)

$$\frac{\Delta x}{x_0} = \frac{\Delta p}{p_0}$$

 \rightarrow alternative method: time of flight (TOF)

R.Pardo, RIA Diagnostics Development at Argonne

- bunch shape and time distribution
 - bunch shape monitor (BSM)
 - primary beam hits thin wire (potential -10 keV) c
 - onversion of primary hadron beam into low energy secondary electrons
 - RF deflector converts time into space coordinates spatial resolving detector

Button & Stripline BPMs

Introduction / Cavity BPM

• **Principle** Generates dipole (TM110) and monopole (TM010) modes

- 1. Small thermal noise due to narrow band width (~ MHz).
- 2. No signal at zero position.
- 3. Position is calculated with the dipole mode of cavity pickup
- 4. Normalization from different signal (monopole mode).

Resources and References

- Peter Forck: Lecture on Beam Instrumentation and Diagnostics at the Joint University Accelerator School (JUAS),
 - see also the extended Bibliography. http://www-bd.gsi.de/conf/juas/juas.html
- CERN Accelerator Schools (CAS): https://cas.web.cern.ch/previous-schools and http://cas.web.cern.ch/cas/CAS_Proceedings.html
 - Rhodri Jones and Hermann Schmickler: Introduction to Beam Instrumentation and Diagnostics, CERN-2006-002.
 - Daniel Brandt (Ed.), 2008 CAS on Beam Diagnostics for Accelerators, Dourdan, CERN-2009-005 (2009).
 - Heribert Koziol, Beam Diagnostic for Accelerators, Loutraki, Greece (2000), CERN/PS 2001-012 (DR), see also extended Bibliography.
 - Jacques Bosser (Ed.), Beam Instrumentation, CERN-PE-ED 001-92, Rev. 1994
 - Kay Wittenburg (DESY), Beam diagnostic instruments at 3rd and 4th generation light sources, Tuusula, Finland, 2008 CAS.

- Why do we need beam diagnostics ?
- Beam Parameters and Diagnostics
- Several type of beam diagnostics instrumentation.
- More detailed things about Beam Position Monitor

2022 가속기 및 빔 라인 미래인재 양성 교육단 여름학교

4GSR Beam Diagnostics 2

Korea University Siwon Jang

01. INTRODUCTION OF BEAM POSITION MONITOR

The image current at the vacuum wall is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.

For relativistic velocities, the electric field is mainly transversal: $E_{\perp,lab}(t) = \gamma \cdot E_{\perp,rest}(t)$

Usage of BPMs

A BPM is an non-destructive device

- It has a low cut-off frequency i.e. dc-beam behavior can not be monitored (exception: Schottky spectra, here the physics is due to finite number of particles)
- \Rightarrow Usage with bunched beams!

It delivers information about:

1. The center of the beam

- Closed orbit
 - i.e. central orbit averaged over a period much longer than a betatron oscillation
- ▷ Bunch position on a large time scale: bunch-by-bunch → turn-by-turn → averaged position
- Single bunch position \rightarrow determination of parameters like tune, chromaticity, β -function
- \blacktriangleright Time evolution of a single bunch can be compared to 'macro-particle tracking' calculations
- \blacktriangleright Feedback: fast bunch-by-bunch damping \rightarrow precise (and slow) closed orbit correction

2. Longitudinal bunch shapes

- Bunch behavior during storage and acceleration
- ➢ For proton LINACs: the beam velocity can be determined by two BPMs
- ▶ Low current *relative* measurement down to 10 nA.

Model for Signal Treatment of capacitive BPMs

The wall current is monitored by a plate or ring inserted in the beam pipe:

The image current I_{im} at the plate is given by the beam current and geometry: $I_{im}(t) \equiv dQ_{im}/dt = A/\pi a \cdot dQ_{beam}(t)/dt = A/\pi a \cdot l/\beta c \cdot \omega I_{beam}/dt = A/\pi a \cdot l/\beta c \cdot \omega I_{beam}(\omega)$ Using a relation for Fourier transformation: $I_{beam} = I_0 e^{i\omega t} \Rightarrow dI_{beam}/dt = i\omega I_{beam}$.
Principle of Position Determination with BPM

The difference between plates gives the beam's center-of-mass →most frequent application

'Proximity' effect leads to different voltages at the plates:

Sometimes the transverse transfer impedance is defined via $U_{\Delta} = Z_{\perp}(\omega) \cdot xI_{beam}$ It can be assumed: $Z_{\perp}(\omega, x) = k(\omega, x) \cdot Z_{t}(\omega)$

with $k(\omega, x)$ or $S(\omega, x) = 1/k(\omega, x)$ called **displacement sensitivity** They are geometry dependent, non-linear function, which have to be optimized. Units: k=[mm] and S=[%/mm] or S=[dB/mm]

02. TYPE OF BPM

Shoe-box BPMs

Shoe-box BPMs used at low β proton & ion synchrotron for 1MHz < f_{rf} < 10MHz. *Example:* HIT cancer therapy synchrotron 0.8 MHz < f_{rf} < 5 MHz Aperture 180x70 mm² horizontal

Shoe-box BPM for Proton or Ion Synchrotron

Frequency range: 1 MHz $\leq f_{rf} \leq 10$ MHz \Rightarrow bunch-length >> BPM length.

Button BPM for short Bunches

LINACs, e⁻-synchrotrons: 100 MHz $\leq f_{rf} \leq 3$ GHz \rightarrow bunch length \approx BPM length

 \rightarrow 50 Ω signal path to prevent reflections

Button BPM for short Bunches

'Proximity effect': larger signal for closer plate

Ideal 2-dim case: Cylindrical pipe \rightarrow image current density via 'image charge method' for 'pensile' beam:

$$j_{im}(\phi) = \frac{I_{beam}}{2\pi a} \cdot \left(\frac{a^2 - r^2}{a^2 + r^2 - 2ar \cdot \cos(\phi - \theta)}\right)$$

Image current: Integration of finite BPM size:

$$I_{im} = \int_{-\alpha/2}^{\alpha/2} j_{im}(\phi) d\phi$$

а

outton

Button BPM for short Bunches

Current density can also be calculated by Laplace equation for Fourier components $I_{beam} = \langle I_{beam} \rangle + 2 \langle I_{beam} \rangle \cdot \sum_{n=1}^{\infty} A_n \cos(n\omega_0 t) \quad \text{for Gaussian bunches} : A_n = \exp(-n^2 \omega^2 \sigma_t^2 / 2)$

In addition, frequency dependence can be calculated by this method.

The button BPM can be rotated by 45⁰ to avoid exposure by synchrotron light:

Frequently used at boosters for light sources

horizontal:
$$x = \frac{1}{S} \cdot \frac{(U_1 + U_4) - (U_2 + U_3)}{U_1 + U_2 + U_3 + U_4}$$

vertical: $y = \frac{1}{S} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

Example: Booster of ALS, Berkeley

Due to synchrotron radiation, the button insulation might be destroyed \Rightarrow buttons only in vertical plane possible \Rightarrow increased non-linearity Optimization: horizontal distance and size of buttons

➢ Beam position swept with 2 mm steps
X
Non-linear and inter-plane dependent sensitivity
➢ At center S_x=8.5%/mm in this case
horizontal : x = $\frac{1}{S_x} \cdot \frac{(U_2 + U_4) - (U_1 + U_3)}{U_1 + U_2 + U_3 + U_4}$ vertical : y = $\frac{1}{S_y} \cdot \frac{(U_1 + U_2) - (U_3 + U_4)}{U_1 + U_2 + U_3 + U_4}$

From S. Varnasseri, SESAME, DIPAC 2005

Comparison Shoe-Box and Button BPM

	Shoe-Box BPM	Button BPM	
Precaution	Bunches longer than BPM	Bunch length comparable to BPM	
Shape	Rectangular, cut cylinder	Orthogonal or in-plane orientation	
BPM length (typical)	10 to 20 cm length per plane	Ø1 to 3 cm per button	
Bandwidth (typical)	0.1 to 100 MHz	100 MHz to 5 GHz	
Coupling	1 M Ω or \approx 1 k Ω (transformer)	50 Ω	
Cutoff frequency (typical)	0.01 10 MHz (<i>C</i> =30100pF)	0.3 1 GHz (<i>C</i> =210pF)	
Linearity	Very good, no x-y coupling	Non-linear, x-y coupling	
Sensitivity	Good, care: plate cross talk	Good, care signal matching	
Jsage At (low energy) proton synchrotrons		All electron acc., proton Linacs, high energy synchrotrons	
	horizontal vertical beam guard rings on ground potential		

Stripline BPM: General Idea

For short bunches, the *capacitive* button deforms the signal

- \rightarrow Relativistic beam $\beta \approx l \Rightarrow$ field of bunches nearly TEM wave
- \rightarrow Bunch's electro-magnetic field induces a **traveling pulse** at the strips
- \rightarrow Assumption: Bunch shorter than BPM, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$.

LHC stripline BPM, *l*=12 cm

From C. Boccard, CERN

Stripline BPM: General Idea

For relativistic beam with $\beta \approx 1$ and short bunches:

 \rightarrow Bunch's Electro-magnetic field induces a **traveling pulse** at the strip

 \rightarrow Assumption: $l_{bunch} << l$, $Z_{strip} = R_1 = R_2 = 50 \Omega$ and $v_{beam} = c_{strip}$ Signal treatment at upstream port 1:

- *t=0:* Beam induced charges at **port 1**: \rightarrow half to R_1 , half toward **port 2**
- *t=l/c:* Beam induced charges at **port 2**:
 - → half to R_2 , **but** due to different sign, it cancels with the signal from **port 1** → half signal reflected
- *t=2·l/c:* reflected signal reaches **port 1**

$$\Rightarrow U_1(t) = \frac{1}{2} \cdot \frac{\alpha}{2\pi} \cdot Z_{strip} \left(I_{beam}(t) - I_{beam}(t - 2l/c) \right)$$

If beam repetition time equals 2·l/c: reflected preceding port 2 signal cancels the new one: → no net signal at **port 1**

Signal at downstream port 2: Beam induced charges cancels with traveling charge from port 1 \Rightarrow Signal depends direction \Leftrightarrow directional coupler: e.g. can distinguish between e⁻ and e⁺ in collider

Stripline BPM: Transfer Impedance

The signal from port 1 and the reflection from port 2 can cancel \Rightarrow minima in Z_t For short bunches $I_{beam}(t) \rightarrow Ne \cdot \delta(t)$: $Z_t(\omega) = Z_{strip} \cdot \frac{\alpha}{2\pi} \cdot \sin(\omega l/c) \cdot e^{i(\pi/2 - \omega l/c)}$ Stripline length l=30 cm, $\alpha=10^{\circ}$ $\sigma_{t}=0.01$ ns phase φ 0 -90 2.0 short bunch $\delta(t)$ cransfer imp. $|Z_t|$ [Ω] Voltage 1.51.0 0.5 0.0 0.5 1.0 1.52.0 2.53.0 0.0 0 1 2 З 4 5 frequency f [GHz] time [ns]

➤ Z_t show maximum at $l=c/4f=\lambda/4$ i.e. 'quarter wave coupler' for bunch train ⇒ l has to be matched to v_{beam}

> No signal for $l=c/2f=\lambda/2$ i.e. destructive interference with subsequent bunch

> Around maximum of $|Z_t|$: phase shift $\varphi = 0$ i.e. direct image of bunch

 F_{center} = 1/4 · c/l · (2n-1). For first lope: f_{low} = 1/2· f_{center} , f_{high} = 3/2 · f_{center} i.e. bandwidth ≈1/2· f_{center} F_{recise} matching at feed-through required t o preserve 50 Ω matching.

Stripline BPM: Finite Bunch Length

For $L_t(\omega)$ decreases for higher frequencies For $L_t(\omega)$ decreases for higher frequencies For $L_t(\omega)$ decreases for higher frequencies For $L_t(\omega)$ decreases for higher frequencies

Cure: length of stripline has to be matched to bunch length

2-dim Model for Stripline BPM

Comparable formula as for PCB micro-strip \rightarrow dependence on d and α

A fabricated Stripline BPM

20 cm stripline BPM at TTF2 (chamber Ø34mm) And 12 cm LHC type:

From . S. Wilkins, D. Nölle (DESY), C. Boccard (CERN)

e

Comparison: Stripline and Button BPM (simplified)

	Stripline	Button
Idea	traveling wave	electro-static
Requirement	Careful Z_{strip} =50 Ω matching	
Signal quality	Less deformation of bunch signal	Deformation by finite size and capacitance
Bandwidth	Broadband, but minima	Highpass, but <i>f_{cut}</i> <1 GHz
Signal strength	Large Large longitudinal and transverse coverage possible	Small Size <Ø3cm, to prevent signal deformation
Mechanics	Complex	Simple
Installation	Inside quadrupole possible ⇒improving accuracy	Compact insertion
Directivity	YES	No

TTF2 BPM inside quadrupole

From . S. Wilkins, D. Nölle (DESY)

Cavity BPM

M. Wendt (FNAL)

High resolution on µs time scale can be achieved by excitation of a dipole mode:

Application: small e⁻ beams For pill box the resonator modes given by geometry: (ÎĹC, TESLA...) \blacktriangleright monopole TM₀₁₀ with f_{010} \rightarrow maximum at beam center \Rightarrow strong excitation \triangleright Dipole mode TM₀₁₁ with f_{011} radius \rightarrow minimum at center \Rightarrow excitation by beam offset beam \Rightarrow Detection of dipole mode amplitude (phase relative to monopole gives sign of displacement) E-field length E-field TM110 beam antenna H-field 111 111 dx 111 111 11 E-field E-field TM010 antenna 2 From beam

Cavity BPM

Comparison of BPM Types (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Shoe-box	p-Synch.	Long bunches f _{rf} <10 MHz	Very linear No x-y coupling Sensitive For broad beams	Complex mechanics Capacitive coupling between plates
Button	p-Linacs, all e⁻acc.	f _{rf} >10 MHz	Simple mechanics	Non-linear, x-y coupling Possible signal deformation
Stipline	colliders p-Linacs all e ⁻ acc.	best for β≈1, short bunches	Directivity 'Clean' signals Large Signal	Complex 50 Ω matching Complex mechanics
Ind. WCM	all	non	Broadband	Complex, long insertion
Cavity	e ⁻ Linacs (e.g. FEL)	Short bunches Special appl.	Very sensitive	Very complex, high frequency

Remark: Other types are also some time used, e.g. inductive antenna based, BPMs with external resonator, slotted wave-guides for stochastic cooling etc.

General Idea of BPM

- Several type of BPM
 - Shoe box
 - Button BPM
 - Stripline BPM
 - Cavity BPM

2022 가속기 및 빔 라인 미래인재 양성 교육단 여름학교

4GSR Beam Diagnostics 3

Korea University Siwon Jang

01. BPM Electronics

Characteristics for Position Measurement

Sensitivity: Factor between position calculation and signal quantity (Δ/Σ , logU₁/U₂ etc)

Accuracy: Ability for position reading relative to a mechanical fix-point ('absolute position')

 \succ influenced by mechanical tolerances and alignment accuracy

➢ for cryogenic installations: reproducibility after cryogenic cycles

➢ by electronics: e.g. amplifier drifts, electronic interference, ADC granularity

Resolution: Ability to determine small displacement variation ('relative position')

> typically: *single bunch*: 10^{-3} of aperture ≈ 100 µm

averaged: 10^{-5} of aperture $\approx 1 \,\mu\text{m}$, with dedicated methods $\approx 0.1 \,\mu\text{m}$ > in most case much better than accuracy!

> electronics has to match the requirements e.g. bandwidth, ADC granularity...

Bandwidth: Frequency range available for measurement

≻has to be chosen with respect to required resolution via analog or digital filtering

Signal-to-noise: Ratio of wanted signal to unwanted background

➤ influenced by thermal and circuit noise, electronic interference

 \triangleright can be matched by bandwidth limitation

Dynamic range: Range of beam currents the system has to respond

> position reading should not depend on input amplitude

Signal sensitivity = detection threshold: minimum beam current for measurement

General: Noise Consideration

1. Signal voltage given by: $U_{im}(f) = Z_t(f) \cdot I_{beam}(f)$

- 2. Position information from voltage difference: $x \propto k \cdot U_{\Lambda}$
- 3. Thermal noise voltage given by: $U_{eff}(R, \Delta f) = \sqrt{4k_B \cdot T \cdot R \cdot \Delta f}$

on the harmonics of f_{rf}

Remark: Additional contribution by non-perfect electronics typically a factor 2 Pick-up by electro-magnetic interference can contribute \Rightarrow good shielding required

Comparison: Filtered Signal ↔ Single Turn

However: not only noise contributes but additionally **beam movement** by betatron oscillation ⇒ broadband processing i.e. turn-by-turn readout for tune determination

General Idea: Broadband Processing

▷ Hybrid or transformer close to beam pipe for analog $U_{\Delta} \& U_{\Sigma}$ generation or $U_{left} \& U_{right}$

- > Attenuator/amplifier
- ➢ Filter to get the wanted harmonics and to suppress stray signals
- ▷ ADC: digitalization of U_{Δ}/U_{Σ} or calculation from $U_{left} \& U_{right}$
- Advantage: Bunch-by-bunch possible, versatile post-processing possible
- **Disadvantage:** Resolution down to $\approx 100 \ \mu m$ for shoe box type , i.e. $\approx 0.1\%$ of aperture, resolution is worse than narrowband processing.

General Idea: Logarithmic Amplifier Schematics

General Idea: Narrowband Processing

Narrowband processing equals heterodyne receiver (e.g. at AM-radios or spectrum analyzer)

- Attenuator/amplifier
- > Mixing with accelerating frequency $f_{rf} \Rightarrow$ signal with sum and difference frequency
- ▶ Bandpass filter of the mixed signal (e.g at 10.7 MHz)
- Rectifier: synchronous detector
- \succ ADC: digital calculation of ΔU/ΣU

Advantage: spatial resolution about 100 time better than broadband processing. **Disadvantage:** No turn-by-turn diagnosis, due to mixing = 'long averaging time' For non-relativistic p-synchrotron \rightarrow variable f_{rf} leads via mixing to constant intermediate freq.

Narrowband Processing with Multiplexing

Dedicated analog electronics for narrowband processing on one card (commercially available):

Idea: narrowband processing, all buttons at same path \Rightarrow multiplexing of single electronics chain Multiplexing within ≈ 1 ms: \Rightarrow only one button is processed \Rightarrow minimal drifts contribution

Processing chain: Buttons \rightarrow multiplexer \rightarrow filter \rightarrow linear amplifier with fine gain steps

 \rightarrow mixing with $f_{rf} \rightarrow$ narrow intermediate frequency filter BW 0.11 MHz

 \rightarrow synchronous detector for rectification \rightarrow de-multiplexer \rightarrow slow and precise ADC

Advantage: High accuracy, high resolution, high dynamic range by automated gain control AGC **Disadvantage:** Multiplexing \Rightarrow only for stable beams >> 10 ms, narrowband \Rightarrow no turn-by-turn **Remark:** 'Stable' beam e.g. at synch. light source, but not at accelerating synchrotrons!

Analog versus Digital Signal Processing

Modern instrumentation uses **digital** techniques with extended functionality.

Digital receiver as modern successor of heterodyne receiver

- Basic functionality is preserved but implementation is very different
- Digital transition just after the amplifier&filter or mixing unit
- ➢ Signal conditioning (filter, decimation, averaging) on FPGA

Advantage of DSP: Stable operation, flexible adoption without hardware modification **Disadvantage of DSP:** non, good engineering skill requires for development, expensive

Digital Signal Processing Realization

Multiplexing, digitalization and digital filtering (commercially available):

From I-Tech LIBERA Specification

LIBERA Digital BPM Readout: Analog Part and Digitalization

LIBERA Digital BPM Readout: Digital Signal Processing

Remark: For p-synchrotrons direct 'baseband' digitalization with 125 MS/s due to $f_{rf} < 10$ MHz
Amplitude-to-Time Normalizer Schematics

Remark: Design for LHC with f_{rf} =40 MHz and \approx 900 locations Partly comparable to traditional AM/PM modulation

Amplitude-to-Time Normalizer Description

General functionality for Amplitude-to-time Normalizer:

- ➢ Bipolar signals A, B are split into two branches
- \triangleright One branch is delayed by T_1
- \triangleright The delayed signal of A is added to the direct branch of B and vice versa
- > The zero crossing time depends on the signals ratio and varies in opposite directions for two branches; it can vary up to a maximum of T_1
- \triangleright Zero-crossing detector converts to time \rightarrow start of logical pulse \Leftrightarrow zero crossing
- \succ Delay of channel D by T_2
- \triangleright AND produces time overlap of channel C and D
- ▷ Position information is given by $\Delta t = 2 T_1 [(A B)/(A + B)] + T_2$
- > *Requirement:* Bunch separation > $T_1 + T_2$

Advantage: reduction of 2 channels and cables, high input dynamics, auto-trigger Disadvantage: requires specialized and tightly time-adjusted electronics, no intensity signal Remark:

Comparison of BPM Readout Electronics (simplified)

Туре	Usage	Precaution	Advantage	Disadvantage
Broadband	p-sychr.	Long bunches	Bunch structure signal Post-processing possible Required for fast feedback	Resolution limited by noise
Log-amp	all	Bunch train >10µs	Robust electronics High dynamics Good for industrial appl.	No bunch-by-bunch Possible drifts (dc, Temp.) Medium accuracy
Narrowband	all synchr.	Stable beams >100 rf-periods	High resolution	No turn-by-turn Complex electronics
Narrowband +Multiplexing	all synchr.	Stable beams >10ms	Highest resolution	No turn-by-turn, complex Only for stable storage
Digital Signal Processing	all	Several bunchesVery flexibleADC 125 MS/sHigh resolutionTrendsetting technologyfor future demands		Limited time resolution by ADC \rightarrow undersampling (complex or expensive)
Amplto-Time Normal. and AM→PM	(all)	Limited f _{rf} Low bunching factor	Only 2 channels High dynamics	Special electronics No intensity signal A bit exotic

Summary

With BPMs the center in the transverse plane is determined for bunched beams.

Coupling beam \rightarrow detector given by the transfer impedance $Z_t(\omega)$ signal estimation $I_{beam} \rightarrow U_{im}$ **Different type of BPM:**

Shoe box = linear cut: for p-synchrotrons with $f_{rf} < 10 \text{ MHz}$

Advantage: very linear. Disadvantage: complex mechanics

Button: Most frequently used at all accelerators, best for f_{rf} >10 MHz

Advantage: compact mechanics. Disadvantage: non-linear, low signal

Stripline: Taking traveling wave behavior into account, best for short bunches

Advantage: precise signal. Disadvantage: Complex mechanics for 50 Ω , non-linear Cavity BPM: dipole mode excitation \rightarrow high resolution $1\mu m@1\mu s \leftrightarrow$ spatial application Electronics used for BPMs:

Basics: Resolution in space \leftrightarrow resolution in time i.e. the bandwidth has to match the application

Broadband processing: Full information available, but lower resolution, for fast feedback

Log-amp: robust electronics, high dynamics, but less precise

Analog narrowband processing: high resolution, but not for fast beam variation **Digital processing:** very flexible, but limited ADC speed, more complex

Resources and References

- Peter Forck: Lecture on Beam Instrumentation and Diagnostics at the Joint University Accelerator School (JUAS), see also the extended Bibliography http://www-bd.gsi.de/conf/juas/juas.html
- CERN Accelerator Schools (CAS): http://cas.web.cern.ch/cas/CAS%20Welcome/Previous%20Schools.htm and http://cas.web.cern.ch/cas/CAS_Proceedings.html
 - Rhodri Jones and Hermann Schmickler: Introduction to Beam Instrumentation and Diagnostics, CERN-2006-002.
 - Daniel Brandt (Ed.), 2008 CAS on Beam Diagnostics for Accelerators, Dourdan, CERN-2009-005 (2009).
 - Heribert Koziol, Beam Diagnostic for Acclerators, Univ. Jyväskylä, Finland, CERN 94-01, http://schools.web.cern.ch/Schools/CAS/CAS Proceedings.html (1993).
- Jacques Bosser (Ed.), Beam Instrumentation, CERN-PE-ED 001-92, Rev. 1994

2022 가속기 및 빔 라인 미래인재 양성 교육단 여름학교

경청해 주셔서 감사합니다!

Thank you for your attention!

How to decide a BPM type?

Or

- 1. LINAC and transport lines vs Synchrotron ?
- 2. Protons/lons/electron?
- 3. Total Beam Energy?
- 4. Non-destructive or Destructive?
- 5. How precise, accurate, resolution?
- 6. Space for installation?
- 7. Bunch spacing?

Button or Stripline BPM

1. Beam transport line!

- 2. Electron!
- 3. 1.3 GeV!
- 4. Non-destructive!
- 5. Nano meter level~! And ns decay time!
- 6. Inside vacuum chamber!
- 7. 150ns!

Cavity BPM

How to decide a BPM type?

- 1. LINAC and transport lines vs Synchrotron ?
- 2. Protons/lons/electron?
- 3. Total Beam Energy?
- 4. Non-destructive or Destructive?
- 5. How precise, accurate, resolution?
- 6. Space for installation?

- 1. Beam transport line!
- 2. Electron!
- 3. 1.3 GeV
- 4. Non-destructive!
- 5. Nano meter level~! And ns decay time!
- 6. Inside vacuum chamber!

Introduction / Cavity BPM

• **Principle** Generates dipole (TM110) and monopole (TM010) modes

Dipole mode selectable coupler

Introduction / Cavity BPM

Introduction / Cavity BPM

Design of Low-Q IP-BPM

 The rectangular design is determined since f0 for TM210 or TM120, which is mainly determined by cavity size in X and Y direction, a and b. From simulation and measurements of test cavities, a = 60.88 mm and b = 48.57 mm were determined.

		60.88 ← →
Parameters	Length[mm]	5.8 30 ↔
X direction (= a)	60.88	R=3
Y direction (= b)	48.57	
Z direction (= L)	5.8	
X-beam pipe	12	
Y-beam pipe	6	↓ 2.6 R=4

Figure 1: Dimension of cavity

The cavity length *L* has to be shortened in order to reduce angle sensitivity. However, shorter *L* decreases *R/Q*, which reduces position sensitivity also. To recover position sensitivity, *Rp is required to be small, in order to prevent* leakage of the field from the cavity.

11cm Low-Q IP-BPM design

• 11cm Low-Q IP-BPM drawings of HFSS

11cm Low-Q IP-BPM sensor cavity design

• Electric field mapping of HFSS simulation

Mono-pole mode :3.9808 GHz X-dipole mode :5.7127 GHz Y-dipole mode : 6.4280 GHz

Results of HFSS simulation

11cm AL ver.

Port	f ₀ (GHz)	β	Q ₀	Q _{ext}	Q_L	τ (ns)
X-port	5.7127	5.684	4959.29	872.42	741.91	18.72
Y-port	6.4280	5.684	4670.43	821.61	698.70	17.23

Output signal for Y-port (11cm AL ver.)

Tested Double block IP-BPM

• Made by Aluminum (2kg for double block) – Precise surface machining within 4um.

IP-BPM RF measurement

	Port	f _o	β	Q	Q	Q	т (ns)	V_out (uV/2nm)
Designed	Y-port	6.4280	5.684	4670.43	821.61	698.70	17.23	7.448
Double_1	Y-port	6.4099	0.668	845.66	1266.7	507.11	12.59	6.010
IP-BPM A	Y-port	6.4079	1.140	1231.64	1079.99	575.42	14.29	6.362
Double_2	Y-port	6.4097	0.641	834.70	1302.5	508.70	12.63	5.927
IP-BPM B	Y-port	6.4080	1.268	1188.69	937.154	524.02	13.02	6.829
Single_1	Y-port	6.4089	0.986	1238.0	1255.9	623.43	15.48	6.037
IP-BPM C	Y-port	6.4075	1.206	1318.40	1093.43	597.71	14.85	6.323

:Previous measurements results (6.4095GHz)

:Re-measurements results in the IP-chamber at July 2013

Average frequency: Y-port 6.4078GHz

The reference cavity frequency!

The Average voltage was 6.248uV/2nm that means 3.124uV/nm for 1.6nC! However, we only used 1-port signals so that the out voltage correspond to 1.562uV/nm for 1.6nC!

Reference cavity BPM design

Cavity shape for HFSS simulation ٠

Port	f ₀ (GHz)	Aim f ₀	β	\mathbf{Q}_{0}	Q _{ext}	\mathbf{Q}_{L}	τ (ns)
X-port	5.7107	5.6978	0.00964	1201.20	124578	1189.73	33.157
Y-port	6.4148	6.4078	0.01528	1228.83	80421.2	1210.34	30.029

too

.

.

Test scheme @ end of Linac

Distance between each elements

- In this test, we used two BPMs (Double block).
- Beam test performed during two shift
- The beam position at Low-Q IP-BPM was estimated by using two strip-line BPMs.

Results of Nov. beam test

 Calibration Run was made under 40 dB, 30 dB, 20 dB attenuation cases. This is to enlarge dynamic range of the electronics, in order not to saturate while sweeping the beam.

Results of IP-BPM y-port sensitivity At November beam test

- IP-BPM sensitivity

(For y-port)

= 2.2558[mV/um]

(one-port measurements of BPM1)

= 2.22996[mV/um]

(one-port measurements of BPM2)

- Designed sensitivity
 - = **3.005** [mV/um] (BPM1)
 - = 2.964 [mV/um] (BPM2)

ICT monitor: 0.36~0.38 *10^10 (at LNE)

IPBPM electronics Specification

Stage	Function	Gain [dB]	NF [dB]	P1dB [dBm]	Power	Part #	I [mA]
1	Ring Coupler	-3.0	3.0	100000000	-63.0	MS	
2	LNA	19.0	1.8	15	-44	HMC902LP3E	80
3	Ring Coupler	-3.0	3.0	100000000	-47	MS	
4	DA	19.0	1.8	15	-28	HMC902LP3E	80
5	Attem / Filter	-3.0	3.0	100000000	-31		
6	DA	19.0	1.8	15	-12	HMC902LP3E	80
7	Hybrid	-3.0	3.0	100000000	-15	MS	
8	Mixer	-7.0	7.0	0	-22	HMC129LC4	
9	LPF	-1.0	1.0	100000000	-23	SXLP-40+	
10	OPAMP	16.0	15.0	100000000	-7	OPA847	40
	Total Gain	53.0	4.88		-7	Toal Current	280

· · · · · · · · · · · · · · · · · · ·	-A-		<mark>`⊛</mark>	
	Contraction of the second	Manu 3号出引고 IP-BPM Electronics Module Model CUTH-IPERM-41 SN: 3911101-001) Đ	
ELEVENT OF SECONDENSITY OF SEC	Dantya	0 Uniter	• • • •	M. e. c.h.t.i.n.e.
			1	
				.)

	KNU Electronics
BW of LPF	40MHz
Gain	54dB~ 45dB
Thermal Noise (by calculation)	-96dBm
Estimated Resolution due to thermal noise	1nm
Cascaded NF	1.88dB
Estimated Resolution considering NF	1nm (NF 1.88dB)
Estimated Latency	25ns

Y-port electronics linearity test

- The IPB-Y electronics performance was checked. The linearity test was performed due to different RF input power. The linear range for Y-port electronics was checked from 94.68dBm to -46.85dBm.
- The conversion gain was measured from 53 to 54dBm within RF working range.

Installation of IP-BPM system with alignment check

• The IP-BPM system installation

Installation of IP-BPM system

-M6深さ5

1

Pitch correction

Ref. BPM install Electronics w/ cable connection

20.0mVs

ADC system check (C009-H)

熱 🖀 🔽

IP-mover control program with I-Q tuning

IP-BPM beam test Experimental scheme

Bema position resolution measurements of Low-Q IP-BPM

I-Q tuning

I-Q tuning was performed by using oscilloscope. When I signal shows the maximum position, Q signal was set to minimum position by using phase shifter.

Bema position resolution measurements of Low-Q IP-BPM

IP-BPM

IP-BPM calibration beam test

Calibration run of IPBPM

• We performed calibration run under the 0dB.

- The used optics was 100 x 1000 beta optics, which optics has 1um level jitter.
- The QDOFF was set to IP waist.
- The data was taken at 150619 day shift.
- The used method was integration method from #53 to #63 sample numbers.
- Also I' and Q' does normalized by Ref_Y signal with same sample points region.
- The Calibration factor was calculated by (All the signal was integrated),
 I' = (I*CosX + Q*SinX) [counts], Q' = (Q*CosX I*SinX) [counts]
 Calibration factor = (Δ I' [coounts])/(Δ Mover position [um])
- All the I and Q signal was not performed a mean subtract calculation. Because we installed C-band region band pass filters.

Calibration test by using Low-Q IP-BPM

The method to calculate the residual of IP-BPMs

We take an extrapolating method by using geometrical relation between thr ee IP-BPMs.

Differences are expressed by ;

$$\begin{split} f_1 &= I_1 - \frac{I_2 Z_{13} - I_3 Z_{12}}{Z_{23}} = \frac{I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12}}{Z_{23}} \\ f_2 &= I_2 - \frac{I_3 Z_{12} + I_1 Z_{23}}{Z_{13}} = \frac{-I_1 Z_{23} + I_2 Z_{13} - I_3 Z_{12}}{Z_{13}} \\ f_3 &= I_3 - \frac{I_2 Z_{13} - I_1 Z_{23}}{Z_{12}} = \frac{I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12}}{Z_{12}} \\ f_0 &\equiv I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12} \\ f_1 &= \frac{f_0}{Z_{23}}, \quad f_2 = \frac{f_0}{Z_{13}}, \quad f_3 = \frac{f_0}{Z_{12}} \\ \frac{\partial f_0}{\partial I_1} &= Z_{23}, \quad \frac{\partial f_0}{\partial I_2} = -Z_{13}, \quad \frac{\partial f_0}{\partial I_3} = Z_{12} \end{split}$$

T 77

Residuals are expressed by ;

$$\begin{pmatrix} \Delta f_1^2 \\ \Delta f_2^2 \\ \Delta f_3^2 \end{pmatrix} = \begin{pmatrix} 1 & (\frac{Z_{13}}{Z_{23}})^2 & (\frac{Z_{12}}{Z_{23}})^2 \\ (\frac{Z_{23}}{Z_{13}})^2 & 1 & (\frac{Z_{12}}{Z_{13}})^2 \\ (\frac{Z_{23}}{Z_{12}})^2 & (\frac{Z_{13}}{Z_{12}})^2 & 1 \end{pmatrix} \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \sigma_3^2 \end{pmatrix} = A \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \sigma_3^2 \end{pmatrix}$$

Since det A is zero, $\sigma_1 = \sigma_2 = \sigma_3 \equiv \sigma$

 $\sigma = \Delta f_1 / \sqrt{1 + (\frac{Z_{13}}{Z_{23}})^2 + (\frac{Z_{12}}{Z_{23}})^2} = \Delta f_2 / \sqrt{(\frac{Z_{23}}{Z_{13}})^2 + 1 + (\frac{Z_{12}}{Z_{13}})^2} = \Delta f_3 / \sqrt{\frac{Z_{23}}{Z_{12}}} + (\frac{Z_{13}}{Z_{12}})^2 + (\frac{Z_{13}}{$

Beam position measurement and prediction

	IPBPM-A	IPBPM-B	IPBPM-C
	(Interpolated by IPBPM-B and C)	(Interpolated by IPBPM-A and C)	(Interpolated by IPBPM-A and B)
Geometrical factor	0.531065	0.802629	0.271567

2013年 11月 8日 金曜日

Resolution calculation: 0dB

• We performed resolution run under the 0dB

- The used optics was 100 x 1000 beta optics, which optics has 1um level.
- The QDOFF was set to IP waist.
- The data was taken at 150619 day shift.
- The used method was integration method from #53 to #63 sample numbers.
- Also I' and Q' does normalized by Ref_Y signal with same sample points region.
- The beam was set to few um offset position.
- The Calibration factor was calculated by (All the signal was integrated),
 I' = (I*CosX + Q*SinX) [counts], Q' = (Q*CosX I*SinX) [counts]
 Calibration factor = (Δ I' [counts])/(Δ Mover position [um])
- All the I and Q signal was not performed a mean subtract calculation.
- Predicted position(ADC counts) for IPA was calculated as follow equation,
 Predicted position of IPA-YI' = a1*IPB-YI' + a2*IPB-YQ' + a3*IPC-YI' + a4*IPC-YQ' + a5*Ref-Y + a6*IPA-XI' + a7*IPA-XQ' + a8*IPB-XI' + a9*IPB-XQ' + a10*IPC-XI' + a11*IPC-XQ' + a12*Ref-X + a13
 - Residual of IPC-YI' = Measured IPC-YI' Predicted IPC-YI'

The results of IPBPM resolution test at June 2015 in ATF2

IPBPM orbit feedback study

IPBPM orbit feedback study

IPBPM orbit feedback study

Feedback off beam jitter: 370nm. Feedback on beam jitter: 67nm ~82% beam jitter was reduced And well focused orbit feedback.

2022 가속기 및 빔 라인 미래인재 양성 교육단 여름학교

경청해 주셔서 감사합니다!

Thank you for your attention!