Cavity Beam Position Monitors

2025 Accelerator and Beam Line Field Training Jul 8 2025, Korea University Sejong Campus

Soohyung Lee, Ph. D (Korea University)

Course Overview

- Jul 8, 2025 (9:30 12:15)
 - Cavity beam position monitor basics
 - Measurements for position resolutions of cavity BPM
 - Python installation for data analyses
 - (hands-on) cBPM Position Resolution Measurement in 2023
- Jul 9, 2025 (9:30 12:15)
 - (hands-on) cBPM Position Resolution Measurement in 2024
 - (hands-on) cBPM Position Resolution Measurement in 2025

Cavity Beam Position Monitor

Beam Position Monitors (BPM)

- Beam position monitors measure the beam position inside the beam pipe
- Measurements of beam positions are crucial in the accelerators
 - Provides feedbacks for the beam orbit corrections
 - Diagnoses of components in the accelerator
- Since beam sizes are usually very small, precise position measurements are required
 - e.g. Interaction point (IP) in the International Linear Collider (ILC)
 - $\sigma_{\rm y} = 5.9 \, {\rm nm} \rightarrow {\rm requires}$ a few nano-meter position resolution

Types of BPMs

Button BPM

- Calculates beam position by comparing signals from four small electrodes
- Simple, cheap, fast, but position resolution is limited ~1
 µm

Stripline BPM

- Uses a long stripline electrodes along the beam direction
- Sensitive to the signal direction, phase can be measured too
- Limited resolution by $\mathcal{O}(10) \, \mu \mathrm{m}$

Cavity BPM

- Utilizes the electromagnetic modes induced by the beam passing through
- Very good resolutions (nano-meter scale)
- Complicated, expensive

Cavity BPM Basics

- KOREA
 UNIVERSITY
- \bullet Dipole mode (TM_{110}) is used since the dipole mode signal is proportional to the offset of the beam from the cavity center
 - Same offset, opposite direction → same amplitude, opposite phase
 - If beam passes through the center of the cavity, no signal appears
 - Single cavity BPM can't determine the absolute position, but an offset from the center
 - ► To determine the absolute position, another cavity BPM (reference cavity) is necessary

Pickup signal from a cavity BPM

$$V_{\text{out}} = V_0 e^{-\frac{t}{2\tau}} \sin(\omega t + \phi)$$

 ω : Cavity TM₁₁₀ resonant frequency

 ϕ : Phase of BPM signal

Pickup signal from a cavity BPM

$$V_{\text{out}} = V_0 e^{-\frac{t}{2\tau}} \sin(\omega t + \phi)$$

$$\omega: \text{ Cavity TM}_{\text{110 resonant frequency}}$$

$$\phi: \text{ Phase of BPM signal}$$

$$V_0 = \frac{\omega q}{2} \sqrt{\frac{Z}{Q_{\text{ext}}} \left(\frac{R}{Q}\right)} \exp\left(-\frac{\omega^2 \sigma_z^2}{2c^2}\right)$$

q: Charge of the beam

Z: Load impedance (usually 50 Ω)

Pickup signal from a cavity BPM

$$V_{\text{out}} = V_0 e^{-\frac{t}{2\tau}} \sin(\omega t + \phi)$$

 ω : Cavity TM₁₁₀ resonant frequency

 ϕ : Phase of BPM signal

$$V_0 = \frac{\omega q}{2} \sqrt{\frac{Z}{Q_{\text{ext}}}} \left(\frac{R}{Q}\right) \exp\left(-\frac{\omega^2 \sigma_z^2}{2c^2}\right)$$

q: Charge of the beam

Z: Load impedance (usually 50 Ω)

$$\frac{R}{Q} \simeq 50.3 \times \left(\frac{\omega}{c}\right)^3 LT^2 x^2$$

L: Cavity length

c: Speed of light

x: Beam offset from the cavity center

T: Transit time factor (phase transition during the beam passing time)

Pickup signal from a cavity BPM

$$V_{\text{out}} = V_0 e^{-\frac{t}{2\tau}} \sin(\omega t + \phi)$$

 ω : Cavity TM₁₁₀ resonant frequency

 ϕ : Phase of BPM signal

T. Nakamura, M. Sc. Thesis, University of Tokyo (2008)

$$V_0 = \frac{\omega q}{2} \sqrt{\frac{Z}{Q_{\text{ext}}}} \left(\frac{R}{Q}\right) \exp\left(-\frac{\omega^2 \sigma_z^2}{2c^2}\right)$$

From the Gaussian beam shape σ_{τ} : Beam bunch length

q: Charge of the beam

Z: Load impedance (usually 50 Ω)

$$\frac{R}{Q} \simeq 50.3 \times \left(\frac{\omega}{c}\right)^3 LT^2 x^2$$

L: Cavity length

c: Speed of light

x: Beam offset from the cavity center

T: Transit time factor (phase transition during the beam passing time)

Pickup signal from a cavity BPM

$$V_{\text{out}} = V_0 e^{-\frac{t}{2\tau}} \sin(\omega t + \phi)$$

 ω : Cavity TM₁₁₀ resonant frequency

 ϕ : Phase of BPM signal

$$V_0 = \frac{\omega q}{2} \sqrt{\frac{Z}{Q_{\text{ext}}}} \left(\frac{R}{Q}\right) \exp\left(-\frac{\omega^2 \sigma_z^2}{2c^2}\right)$$

From the Gaussian beam shape σ_{τ} : Beam bunch length

q: Charge of the beam

Z: Load impedance (usually 50 Ω)

$$Q_{\rm ext} = Q_0/\beta$$

 Q_0 : Unloaded quality factor of the cavity TM₁₁₀ mode β : Coupling coefficient

$$\frac{R}{Q} \simeq 50.3 \times \left(\frac{\omega}{c}\right)^3 LT^2 x^2$$

L: Cavity length

c: Speed of light

x: Beam offset from the cavity center

T: Transit time factor (phase transition during the beam passing time)

or,
$$Q_0 \equiv \frac{\omega U}{P_{\rm wall}} \ {\rm and} \ Q_{\rm ext} \equiv \frac{\omega U}{P_{\rm out}}$$

U: Stored energy in a cavity eigenmode P_{wall} : Dissipated power at the cavity wall

 $P_{
m out}$: Output power to the circuit

Pickup signal from a cavity BPM

$$V_{\text{out}} = V_0 e^{-\frac{t}{2\tau}} \sin(\omega t + \phi)$$

ω: Cavity TM₁₁₀ resonant frequency

 ϕ : Phase of B

The output signal from the cavity $= \frac{\omega q}{Z} \left(\frac{Z}{R} \right) \exp \left(-\frac{\omega^2 \sigma_z^2}{2} \right) = \frac{Erom}{\sigma_z: Be}$ BPM is proportional to q and x!

Z: Load impedance (usually 50 Ω)

$$\frac{R}{Q} \simeq 50.3 \times \left(\frac{\omega}{c}\right)^3 LT^2 x^2$$

L: Cavity length

c: Speed of light

x: Beam offset from the cavity center

T: Transit time factor (phase transition during the beam passing time)

$$Q_{\rm ext} = Q_0/\rho$$

 Q_0 : Unloaded quality factor of the cavity TM₁₁₀ mode β : Coupling coefficient

or,
$$Q_0 \equiv \frac{\omega U}{P_{\rm wall}} \ {\rm and} \ Q_{\rm ext} \equiv \frac{\omega U}{P_{\rm out}}$$

U: Stored energy in a cavity eigenmode

 P_{wall} : Dissipated power at the cavity wall

 $P_{\rm out}$: Output power to the circuit

 BPM signals are combined by a hybrid coupler, downconverted by a mixer, and finally acquired by a readout

Hybrid coupler

- Takes summation (Σ -port) or subtraction (Δ -port) of two input signals
- For BPM, Δ-port is used since the opposite pickup antennas have opposite phase
- · Combining signals of two ports increases signal power, therefore, better sensitivity

Local Oscillator

BPM signals
 hybrid coupl
 by a mixer, a
 by a readou

Readout

- Hybrid coup
 - Takes summ
 - For BPM, Δ-

kup amemas nave opposite pnase

- Combining signals of two ports increases signal power, therefore, better sensitivity
- Mixer and local oscillator
 - BPM signal and local oscillator signal are mixed by mixer
 - $S_{\text{BPM}} \times S_{\text{LO}} = A \left[\cos((\omega_{\text{BPM}} \omega_{\text{LO}})t + (\phi_{\text{BPM}} \phi_{\text{LO}}) + \cos((\omega_{\text{BPM}} + \omega_{\text{LO}})t + (\phi_{\text{BPM}} + \phi_{\text{LO}}) \right]$
 - Downconversion: translate BPM signal frequency (RF) to desired frequency (IF)

Local Oscillator

• BPM signals are combined by a

hybriby a by a

Hybr

Tak

For

Con

Mixe

► BPI

 $-S_{\rm BPM} \times S_{\rm LO} = A \left[\cos((\omega_{\rm BPM} - \omega_{\rm LO})t + (\phi_{\rm BPM} - \phi_{\rm LO}) + \cos((\omega_{\rm BPM} + \omega_{\rm LO})t + (\phi_{\rm BPM} + \phi_{\rm LO}) \right]$

- Downconversion: translate BPM signal frequency (RF) to desired frequency (IF)
- Readout (e.g. oscilloscope)
 - Retrieves downconverted signal and stores into digital data

- Received data is a time-domain data
 - i.e. signal voltage vs time

Fast Fourier transform

16

Position Resolution of Cavity BPM

Position Resolution of BPM

- The position resolution is a critical factor of a BPM
 - Precision of the position measurement should be comparable to beam size
 - e.g. σ_y =5.9 nm at ILC IP
- Cavity BPM is the only easy option to achieve <1 µm position resolution
 - Button BPM: $\mathcal{O}(1) \mathcal{O}(10) \mu m$
 - Stripline BPM: $\mathcal{O}(10) \mu \text{m}$
- Position resolution measurements → "3 BPM method"
 - Calibration run: Obtaining a translation factor from arbitrary FFT value to real world quantity
 - Resolution run: Data at a beam position to measure the resolution

T. Nakamura, M. Sc. Thesis, University of Tokyo (2008)

Resolution Measurements of Cavity BPMs

- Calibrations
 - Changing the beam orbit by steering magnets
 - Referring stripline BPMs for the calibration

- Mapping FFT to x_0 : obtaining Δ FFT/ Δx_0
 - V-shape appears since the cavity BPM does not know the absolute position of the beam

Resolution Measurements of Cavity BPMs

- Resolution measurements
 - Finding a correlation between all channels and the one of interest (*k*-th channel):

$$\mathbf{d}_k = \mathbf{D}_{\mathcal{U}} \cdot \mathbf{v}$$

 \mathbf{d}_k : measured positions of the k-th channel

 \mathbf{D}_{k} : measured positions not of the k-th channel but of the others

v: correlation coefficients

- Once we get v, predictions of measurements can be made by:

$$\mathbf{d}_{k}^{\text{pred.}} = \mathbf{D}_{k} \cdot \mathbf{v}$$

- Singular value decomposition (SVD)

$$\mathbf{D}_{\mathbb{M}} = U \Sigma V^{\mathsf{T}} \to \mathbf{v} = (V \Sigma^{-1} U^{\mathsf{T}}) \cdot \mathbf{d}_{\mathbb{K}}$$

• \mathbf{d}_k is still in FFT amplitude, so it needs to be translated by the calibration factors

$$\mathbf{d}^{\mu \mathrm{m}} = \mathbf{d}^{\mathrm{FFT}} \cdot \frac{\Delta x_0}{\Delta \mathrm{FFT}}$$

From the residual ($\mathbf{R} \equiv \mathbf{d}_k^{\text{pred.}} - \mathbf{d}_k^{\text{meas.}}$), the resolutions (σ) are obtained

Measured FFT amplitude [arb. unit]

Residual [arb. unit]

Example: L-band Cavity BPM for ILC

L-band Cavity BPM for ILC

KOREA UNIVERSITY

- Two types of cryomodule in the main LINAC of ILC
 - Type A (~1,100 in total): 1.3 GHz 9-cell cavities * 9
 - Type B (~600 in total, at every 3 modules): 1.3 GHz 9-cell cavities * 8 + a SC quadrupole package (quadrupole/corrector/BPM)
- BPM resolution requirement: $5 \, \mu \mathrm{m}$ (TDR), $\mathcal{O}(100) \, \mathrm{nm}$ (goal)

L-band Cavity BPMs at KEK-ATF

- 1.3 GeV electron LINAC of 110 m long
- ► ~10¹¹ electrons/bunch (1~20 bunches/train)
- Repetition: 3.125 Hz

 At the end of the LINAC, 4 steering magnets, 4 stripline BPMs, and 4 cavity BPMs are located

L-band Cavity BPM Readouts

Signals are merged by hybrid couplers and pass through a downconverter

L-band Cavity BPM Readouts (inside the tunnel)

L-band Cavity BPM Readouts (outside the tunnel)

Resolution Measurements in 2025

IF=45 MHz with 3 different LO's | Different IF's with a common LO

[nm]	2019	2023	2024 (w/ osc.'s)	2024 (w/ pico.)	2025 (IF=45 MHz)	2025 (Common LO)
BPM-A (X)	3750	2062	2033	3068	1372	731
врм-в (х)	2680	1984	824	1904	1933	1123
BPM-C (X)	985	1831	470	1167	1927	383
BPM-A (Y)	698	3450	1457	1392	1716	317
врм-в (Ү)	2260	1948	1234	1198	695	902
BPM-C (Y)	324	712	162	309	767	485