Korea University – IHEP Workshop

October 14~15, Korea University Seoul, Korea

Plasma Acceleration Research at KU

2024. 10. 15

Seong Hee Park

B.-H. Oh, J. Ko, H. Shim, S. Y. Shin, H. W. Lee, K.-H. Kim, M. K. Seo, H.-J. Cho Korea University Sejong Campus

In Collaboration with

KAERI, KERI, SBU, NIU, ANL/AWA, PAL

In Collaboration with

- KAERI : K. Lee, H.-N. Kim
- KERI : J. Kim, K.-N. Kim, Y. Hwangbo
- UNIST: I.H. Nam
- Stoney Brook Univ.: V. Litvinenko
- Norther Illinois Univ.: G. Ha
- Argon National Lab./AWA: J. Power, G. Chen, E. Wisniewski, S. Doran, W. Liu
- Pohang Accelerator Lab.: J. H. Kim, H. Kong, H. J. Kwak, J. Kim, S.-H. Kim

Center for Compact Hybrid Accelerator Technology

Accelerator Size · Accelerating Gradient · RF Frequency

Milestones

- High charge (~1 nC/bunch) bunch train (16 or more)
- Structure design and fabrication
- · Experimental THz characterization method
- Experimental prep. (beamline design and RF measurement)
- 400 GHz structure for demo of high-power and high-gradient, Fabrication

Long term demo:

- Drive beam BBU suppression
- THz power transfer
- Different structure types
- Structure design for EUV demo and fabrication

Laser Plasma Electron Injector

Plasma Targets

High vacuum → Solid target, Low Density Plasma
 High repetition rate → high vacuum, but depending on fs laser system
 Ionization effect → Ionization injection, Ionization diffraction

Beam quality:

Low Energy spread :

Emittance:

Bunch charge:

Repetition rate:

Beam stability: Energy/charge jitter, Pointing Jitter, etc.

Plasma Targets

Gas target vs. Solid target

Gas \rightarrow easy to use and control the density, **but**, stability, vacuum problem **Metal** \rightarrow high vacuum, high rep. rate, stability, but, laser ablation, target, debris ...

■ Vacuum condition estimation : Ø 1.2 m x 0.6 m chamber

He Gas jet: \emptyset 1.0 mm supersonic nozzle - 2.5 ms opening time at 40 bar \Rightarrow 9 ×10²⁰ particles \Rightarrow 4 ×10⁻² Torr **Al plasma plume**: ns Laser ablation: 2~5 mm (L), 100 μ m(W), 10 μ m (D) \Rightarrow 5 ×10¹⁵ ptls \Rightarrow 2 ×10⁻⁷ Torr

Plasma Density: ns Laser - Pulse Energy, Intensity, Focal position, Delay time

Plasma length: Beam size of ns Laser, Distance between Bi-prism and Target surface

Target Chamber with AI target

Cylindrical lens & Bi-prism

OAP Mirror mount

Schematic of LWFA with Al target

(ref. J. Kim et al., Proceedings of LAPD2017)

- Plasma wavelength : $\lambda_p = 3.3 \times 10^{10} n^{-1/2} = 8.5 \ \mu m$
- Laser pulse length : $c\tau = 3 \times 10^8 \times 27 \times 10^{-15} = 8.1 \ \mu m$
- Normalized vector potential : $a_0 = 1.65$
 - **⇒** Operate in Bubble regime
 - ⇒ Self injection + Ionization injection

Pre-Plasma density

Phase of pre-plasma and main plasma of Aluminum target

Laser Width/length $\sim 400 \, \mu \text{m}/1.5 \, \text{mm}$

Laser Delay time: $\Delta t = 110 \sim 150 \text{ ns}$ Laser pulse energy: $120 \sim 260 \text{ mJ}$

Dependence on the focusing position for laser ablation

(Courtesy of W. J. Ryu)

• Main plasma density distribution profile

x([mm])

160

120

Energy(MeV)

Dependence on the focusing position for laser ablation

(Courtesy of W. J. Ryu)

• Main plasma density distribution profile

Issues on LWFA using Metal targets

Laser Propagation in the Plasma – Plasma wave/Wakefield

- Laser Diffraction propagation of envelope
- Self-focusing, Self-compression due to interaction between main laser & Plasma
- Optical Field Ionization of metal ions by main laser
 - Ionization Diffraction due to Ionization process by main laser at 10¹⁶ W/cm²: He – He²⁺; AI – AI³⁺ at 10¹⁹ W/cm²: He – He²⁺, AI – AI¹¹⁺
- ⇒ Ionization by the main laser occurs in Al plasma, not in He
- Electron injection and Trapping
 - Self-injection via. Transverse wave-breaking
 - ionization injection
 - X The threshold laser intensity for barrier suppression ionization (BSI):

$$I_L = \frac{\pi^2 \epsilon_0^3 c}{2e^6} \frac{E_{\text{ion}}^4}{Z^2} \rightarrow I_L[\text{Wcm}^{-2}] \approx 4.0 \times 10^9 \frac{(E_{\text{ion}}[\text{eV}])^4}{Z^2}$$

Target materials: Al vs. Ti

- Simulation Parameters :
- $n_{e0} = 2.0 \times 10^{18} \text{ cm}^{-3} (n_{ef} = 7.33 \times 10^{18} \text{ cm}^{-3})$
- $I_0 = 8.0 \times 10^{19} \,\mathrm{Wcm^{-2}} \ (P_L = 62 \,\mathrm{TW}), \ w_0 = 7 \,\mathrm{\mu m}$

Ti target:

- Electron density near the optical axis is increased and separated, breaking the wake cavity.
 - → It may use as controlled injection

LWFA with thin Ti-layered Al target

Possible Plasma Distribution by modifying metal target structure

How to realize? Need the simulation (FLASH: https://flash.rochester.edu/site/)

Controlled Injection with thin Ti-layered Al target

EPOCH 2D simulation

Simulation parameters	
70 TW	
5.7	
$7.0 \times 10^{19} \text{W/cm}$	
8.0 μm	
0.003	
$1.4 \times 10^{18} \text{ #/cc}$	
800 nm	
25 fs	
500 μm	

^{*} Starting point of injection of Electrons from L-shell of Al ion: ~200 μm

Controlled Injection with thin Ti-layered Al target

a: 160 μm 4 μm

In Vacuum

In Al plasma

1.0

b: 180 μm

c: 240 µm

0.8

Ti layer Position @Thickness 4 μm

15

10

0.2

0.4

0.6

x [mm]

EPOCH 2D simulation

 P_{L}

 a_0

 I_{L}

 W_0

 $n_{\rm ef}/n_{\rm c}$

 $n_{i,Al}$

Simulation parameters

70 TW

5.7

 $7.0 \times 10^{19} \, \text{W/cm}$

 $8.0 \mu m$

0.003

 $1.4 \times 10^{18} \, \text{\#/cc}$

$\begin{array}{ccc} \textbf{Simulation parameters} \\ P_L & 30 \ TW \\ \hline a_0 & 4.27 \\ \hline I_L & 5.0 \times 10^{19} \ \text{W/cm} \\ \hline w_0 & 7.0 \ \mu\text{m} \\ \hline n_{ef}/n_c & 0.001587 \\ \hline n_{i,Al} & 2.8 \times 10^{18} \ \text{\#/cc} \\ \end{array}$

Dephasing-free condition due to Ionization Diffraction

SWFA: Beam-driven sub-THz acceleration

It could be a collection of advantages

- Higher gradient than GHz-TBA
- No co-propagation is needed
- No drive manipulation is needed
- Need to tiny two beamlines
- A few to tens of nC bunch train is needed

But, it still has several major concerns

- BBU could be harder to handle
- Power extraction, transport, and injection could be lossy
- Structure fabrication is not straightforward

Plan & Concept of demo facility

- The R&Ds on Core Technologies for THz-TBA: Simulation, Design, Fabrication, Demonstration, etc.
- Integration of developed core technologies will be verified by EUV generation using THz-TBA.

Layout for Demo Facility - Total : 10 m

Structure design for 400 GHz PET

Structure parameters were optimized to obtain GW power.

• Peak power of 3.3 GW is expected from a bunch train with 16 bunches and 1 nC/bunch.

(Courtesy of H. Kong)

The extraction options are under consideration

Preparation Drive beam shaping

(Courtesy of G. Ha)

TDC-shaping

(Transverse Deflecting Cavity TDC)

- · High quality shaping
- Starting from 35 nC,
 15.4 nC remains (T: 44%)
- Low form factor
 (high form factor is available but more losses)
- Each micro-bunch has small energy spread
- Bunch-to-bunch has energy deviation (controllable up to some level)
- Needs 2-3 powerful TDCs

Laser-shaping

Laser shaping showed surprisingly good quality, so chose laser-shaping result as input

- (relatively) low quality shaping
- 19.2 nC, emittance is 2/3 of TDC-case
- Low form factor
 (high form factor is not available)
- Each micro-bunch has huge energy spread
- Bunch-to-bunch has small energy deviation
- Large laser split-delay stages

Pre-Experiments at 200 GHz: Structure and simulated spectrum

- Structure was successfully fabricated.
- Structure was designed to be compatible with ~0.2 THz.

Fabricated corrugated structure

Wake Impedance (CST simulation)

(ref. H. Kong et. al., Scientific Reports 13:3207 (2023))

Preparation Drive beam for 400 GHz PET prototype

(Courtesy of M.K. Seo)

• Optimization of Drive beam for high power generation by adjusting the time separation between bunches

RF phase at Gun \rightarrow 30°

Design study of Dielectric Undulator

■ Design study of a DTU (Dielectric THz Undulator) ⇒ 가속구조 설계기술과 전자기파 특성을 융합한 도전적인 연구

Multi-bunch instability for high gradient and high power

(Courtesy of B.-H. Oh)

- Multi-bunch Instability by wakefield
- Beam distribution function : $\psi = \psi_0 + \psi_1 e^{i\Omega s/c}$ (ψ_0 : unperturbed; $\psi_1 e^{i\Omega s/c}$: perturbed by wake field due to impedance)
- Single bunch instability
 - Longitudinal impedance : $Z_0^{||}(\omega')$, $\omega' = p\omega_0 + l\omega_s$
 - Transverse impedance : $Z_0^{\perp}(\omega')$, $\omega' = p\omega_0 + \omega_\beta + l\omega_s$
- **Multi-bunch Instability** (*M* : # of bunches; μ: multi-bunch mode #)

•
$$m=1, l=1,2,...: \omega' = pM\omega_0 + \mu\omega_0 + \omega_\beta + l\omega_s; \quad \Omega^{(l)} - \omega_\beta - l\omega_s = \frac{MNr_0}{\gamma T_0^2 \omega_\beta^2 \sigma^2} \sum_{p=-\infty}^{\infty} i \frac{1}{(l)!} e^{-\frac{\omega'^2 \sigma^2}{c^2}} \frac{Z_0^{\perp}(\omega')}{\omega'} \left(\frac{\omega'\sigma}{\sqrt{2}c}\right)^{2/3}$$

CST MS ⇒ Impedance calculation Elegant ⇒ Beam tracking w. impedance Longitudinal impedance

A00

Re{ $Z_0^{\parallel}(\omega)$ }

Re{ $Z_0^{\parallel}(\omega)$ }

Im{ $Z_0^{\parallel}(\omega)$ } $Z_0^{\parallel}(\omega)$ $Z_0^{\parallel}(\omega)$

Beam transport in PET structure

Summary

- The LWFA using laser-ablated metallic plasma has been developed for operating at high repetition rate and high vacuum.
- Metal having ionization level give different evolution of density map.
- The electrons depleted from L-shell of Ti ions ionized by the peak intensity of main laser may be localized near the optical axis, so can be useful for ionization injection.
- The ionization injection can be controlled by the location and the thickness of Ti layer.
- The low energy spread of electron beam can be obtained at a certain condition :
 - where the self-injection is barely occurred
- that the ionization diffraction is rapidly increased, resulting the dephasing-free.
- KU-PAL-NIU-ANL collaborate to develop core methods and technologies to realize THz-TBA and their integration
- Fabrication of 0.4 THz structure is ongoing using LIGA method for a higher quality.
- Bunch train with 16 bunches having 1 nC each will be generated using laser pulse train.
- The peak power of 3.3 GW is expected from upcoming experiment