

LIBERTAS JUSTITIA VERITAS

Beam dynamics in ring and linac

@ KU-IHEP Workshop Oct. 15 2024

EUN-SAN KIM (銀山 金)

Department of Accelerator Science, Korea University

Contents

- ☐ Beam dynamics in 4 GeV light source
- **☐** Beam dynamics in ATF damping ring
- ☐ Beam dynamics in 2.5 GeV light source
- ☐ Beam dynamics in Energy Recovery Linac
- ☐ Beam dynamics in Free Electron Linac

Lattice design (by code SAD)

Parameters	Value
Lattice type	HMBA
Beam energy (GeV)	4
Natural beam emittance (pm)	95
Number of cell	28
Circumference (m)	809.2
Magnetic field (T) in combined dipole	0.48
Gradient (T/m) in combined dipole	-26.3
RF frequency (MHz)	500
Harmonic number	1349
Number of cell	28
Rms energy spread	6.5×10^{-4}
Synchrotron frequency (kHz)	1.59
Beam size(x,y) at long straight section (μ m)	24/7.5
Momentum compaction factor	1.4×10^{-4}
RF bucket height (%)	3.87
Energy loss per turn (MeV)	0.48
Touschek lifetime(hour) at 400 mA	3
Damping time $(x/y/z)(ms)$	29.7/44.4/29.4
Damping partition number (x/y/z)	1.49/1/1.5
RMS bunch length (mm)	2.68
RF voltage (MV)	2.5
Natural chromaticity(x/y)	-86.9/-76.4
Corrected chromaticity	0.1/0.1
Maximum strength (T/m^2) of sextupole	1750
Betatron tune (x/y)	64.29/22.85
Beta function $(x/y)(m)$ in long straight section	6/6
Dispersion function (x) (cm)	
- in long/short straight section	0.6 /2.2

Brilliance and beam lifetime

In-vacuum undulator (period 22mm, gap 8mm L=4m K=1.52)

dipole

beam lifetime

Beam injection by 4 kickers

Beta, bump height, kick angle

Horizontal space in injection scheme Horizontal beam distribution after

for 5 turns after injection

Resistive wall Wake

Short range longitudinal wake function

$$W(s) = \frac{16}{a^2} \left[\frac{e^{-s/s_0}}{3} \cos \frac{\sqrt{3}s}{s_0} - \frac{\sqrt{2}}{\pi} \int_0^\infty \frac{dx \, x^2 e^{-x^2 s/s_0}}{x^6 + 8} \right]$$

Long range longitudinal wake function

$$W(s) = -\sqrt{c/\sigma}/(2\pi a s^{3/2}).$$

Short range transverse wake function

$$W(S) = \frac{8Zo \, c \, so}{\pi a^4} \left[\frac{-1}{12} e^{-\frac{s}{so}} \cos \left(\sqrt{3} \, \frac{s}{so} \right) + \frac{1}{4\sqrt{3}} e^{-s/so} \sin (\sqrt{3} \, s/so) + \frac{\sqrt{2}}{\pi} \int_0^\infty dx \, \frac{e^{-x^2 s/so}}{x^6 + 8} \right]$$

Long range transverse wake function

$$W(s) = \frac{c}{\pi^{3/2}a^3} \sqrt{\frac{Zo}{\sigma s}}$$

characteristic distance : $S_o = (2a^2/Z_o s)^{1/3}$

Resistive wall Wake

Short and long range longitudinal wakes

Short and long range transverse wakes

Potential well distortions due to Resistive wall Wake

1.10 - 1.05 - 1.00 0 1 2 3 4 5

Beam current (mA)

Vlasov equation

Multiparticle tracking

1.30

1.25

Calculated bunch length for the different beam currents

Resistive wall Wake Muilparticle tracking (binning method)

Longitudinal wake (for ith macroparticle)

$$W_o(z_i(n)) = -\frac{eN_b}{N_p} \sum_{j}^{z^i(n) < z^j(n)} N_j W_o'(z^i(n) - z^j(n)) \qquad \text{wake between different bins } (\mathbf{z^i} \text{ and } \mathbf{z^j})$$

$$-\frac{eN_b}{N_p} \sum_{j}^{z_i(n) < z_j(n)} W_o'(z_i(n) - z_j(n)) \qquad \text{wake between macroparticle in a same bin}$$

Transverse wake (for ith macroparticle)

$$W_i^{x}(z_i(n)) = -\frac{eN_b}{N_p} \sum_{j}^{z^i(n) < z^j(n)} \bar{x}^j(n) N_j W_T(z^i(n) - z^j(n))$$

 N_p : bunch population, N_p : number of macroparticles

 $\bar{x}^{\tilde{j}}$: average horizontal or vertical displacements of the preceeding particles

Muilparticle tracking simulation (x,x',y,y',z,ε)

$$\epsilon_i(n) = \epsilon_i(n-1) - \frac{2T_o}{\tau_d} \epsilon_i(n-1) + 2\sigma_{\epsilon o}$$

$$\sqrt{\frac{T_o}{\tau_d}} r_{1i}(n) + V'_{rf} z_i(n-1) + W(z_i)(n),$$

$$z_i(n) = z_i(n-1) + \frac{\alpha c T_o}{E_o} \epsilon_i(n),$$

$$V_{rf}' = 2\pi \nu_{rf} \hat{V}_{rf} [1 - (U_o/\hat{V}_{rf})^2]^{1/2}.$$

$$x_{i}(n) = M_{11}[\epsilon_{i}(n)]x_{i}(n-1) + M_{12}[\epsilon_{i}(n)]x'_{i}(n-1)(1 - \frac{T_{o}}{\tau_{x}}) + \sqrt{\frac{2\epsilon_{z}\beta_{x}T_{o}}{\tau_{x}}}r_{1i}(n) + M_{12}[\epsilon_{i}(n)]\frac{W_{i}^{x}(n-1)}{E_{o}},$$

$$x_{i}'(n) = M_{21}[\epsilon_{i}(n)]x_{i}(n-1) + M_{22}[\epsilon_{i}(n)]x_{i}'(n-1)(1 - \frac{T_{o}}{\tau_{x}}) + \sqrt{\frac{2\epsilon_{z}T_{o}}{\beta_{x}\tau_{x}}}r_{2i}(n) + M_{22}[\epsilon_{i}(n)]\frac{W_{i}^{x}(n-1)}{E_{o}},$$

$$M(\epsilon) = \begin{bmatrix} \cos 2\pi Q_x(\epsilon) & \beta_x \sin 2\pi Q_x(\epsilon) \\ -1/\beta_x \sin 2\pi Q_x(\epsilon) & \cos 2\pi Q_x(\epsilon) \end{bmatrix},$$

$$Q_x(\varepsilon) = Q_x(1 + \varepsilon \xi / E_0)$$
 (\xi : chromaticity)

KOREA UNIVERSITY

Resistive wall Wake

Beam sizes due to chromaticity

beam sizes for different chromaticities in 1.5 mA

beam sizes for different chromaticities at 6 in mA

Resistive wall Wake

Bunch length and energy spread vs beam current

Bunch length and energy spread for the different beam currents (6mA to 0.5mA)

Resistive wall Wake

Transverse instability at chromaticities for different beam currents

Black and red dots indicate that the beam size is not increased and increased due to the wake, respectively.

Fast-ion instability

- In electron storage rings, <u>residual gas molecules can be ionized by the beam</u>. The resulting <u>positive ions are trapped in the electric field of the beam</u>, and accumulate to high density. → The fields of the ions can then drive beam instabilities.
- While electrons move rapidly on the time scale of a single bunch passage, ions move relatively slowly. The dynamical behaviour is then somewhat different.
- If a storage ring is uniformly filled with electron bunches, then ions accumulate over many turns. This leads to the well-known phenomenon of ion trapping, which is usually solved by including "gaps" in the fill pattern.
- Under certain conditions, <u>sufficient ions can accumulate in the passage of a small number of bunches to drive an instability</u>, <u>known as the "fast ion instability"</u>.

Fast-ion instability

Vertical oscillation amplitude of the bunch centroid is $J_y = [\gamma y^2 + 2\alpha yy' + \beta y'^2]/2$ half of the Courant–Synder invariant

Fast-ion instability

400 mA and 0.1 nT

1 train case of 1332 and 400 bunches

400 bunches with 4 trains (233 buckets are empty between trains)

Fast-ion instability

Beam tail distribution due to beam-gas Bremsstrahlung

$$\rho(E) = \frac{1}{\pi} \int dK \cos(KE) \exp\left[-\frac{K^2}{2} + \frac{N\tau_{\epsilon}}{2} \hat{f}\left(\frac{K}{E_0 \sigma_{\epsilon}^0}\right)\right]$$

Simulation result

Energy aperture	1 nTorr	1.5 nTorr
2.5 %	41.1 h	28.1 h
3.0 %	44.6 h	29.3 h
3.87%	48.5 h	33.1 h

Calculation result

Energy aperture	1 nTorr	1.5 nTorr
2.5 %	43.7 h	29.1 h
3.0 %	45.7 h	30.5 h
3.87%	49.4 h	32.9 h

Both simulation and calculation results agree well.

Beam tail distribution due to beam-gas scattering

$$\rho(X) = \frac{1}{\pi} \int dK \cos(KX) \exp\left[-\frac{K^2}{2} + N\tau \hat{f}\left(\frac{K}{\sigma'_x}\right)\right]$$

Beam tail distribution due to intra-beam scattering

Simulation result

Vertical aperture	300 σ _у	400 σ _y	500 σ _y
Residual gas scattering	21.2 h	37.5 h	58.8 h
Intra-beam scattering	1.6 h	2.5 h	3.6 h

calculation result

Vertical aperture	300 σy	400 σ _y	500 σ _y
Residual gas scattering	21.7 h	38.7 h	60.5 h
Intra-beam scattering	1.67 h	2.87 h	4.3 h

Both simulation and calculation results agree well.

Total beam lifetime: 3.2 hour for 400 mA and 1 nTorr

Bunch-lengthening due to 3rd harmonic cavity (1.5 GHz)

Rf voltages seen by a bunch for bunch lengthening

RF buckets with and without third-harmonic voltage for bunch lengthening

Bunch-lengthening due to 3rd harmonic cavity

with harmonic cavity

Potential-Well and longitudinal beam distributions

without harmonic cavity

$$V_{3rd rf} / V_{M rf} = 0.32$$

 $\phi_{3rd} = 1.047 rad$

bunch-lengthening: factor of 3.5

Bunch length as a function of phase angle in 3rd harmonic cavity

Impedance estimation of damping ring Main contributions to the longitudinal impedance

Components	Type	Number	$\left \frac{Z_{ }(w)}{n}\right (\Omega)$	L(nH)	Code used	
BPM	Button-type	96	0.064	4.8	MAFIA	
Bellows	Normal type with $\phi = 24 \text{ mm}$	56	0.02	1.568	ABCI	
	Elliptic type with $\phi = 24 \text{ mm} \times 12 \text{ mm}$	8	0.0058	0.46	MAFIA	
	External kicker with radius $= 30 \text{ mm}$	1	0.01411		ABCI	
	External kicker with raduis $= 15 \text{ mm}$	1	0.01017		ABCI	
Masks	Wiggler	8	0.00096	0.0713	MASK30	
	Straight section	8	0.047	3.544	MAFIA	
Tapers	Length(= 120 mm), angle(= 10.3°)	2	0.0093	0.70	MAFIA	
	Length(= 170 mm), angle(= 10.3°)	2	0.008	0.602	MAFIA	
Septum		1	0.0082	0.6224	ABCI	
Injection kicker	taper part	1	0.0015	0.1203	ABCI	
	step part	1	0.00008	0.0063	ABCI	
RF cavitity	With tapers	2	0.03144	0.687	ABCI	
RF absorber	With SiC with $\sigma = 80$ and $\varepsilon = 16$	4	0.0089	0.671	MAFIA	
Total			0.23	13.9		

Distance from a bunch head (m) longitudinal wake potential of a 6.8 mm Gaussian bunch

calculated longitudinal beam distributions due to 23

2. Beam dynamics in ATF damping ring

longitudinal instability

Longitudinal wake potential for 2 rf cavities in damping ring

Rms energy spread vs turn number.

threshold instability : $N=3.3 \times 10^{10}$

2. Beam dynamics in ATF damping ring

Transverse instability

head-tail effect occuring at positive chromaticity

Transverse wake potential for two cavities

Charge bunch is a Gaussain with an rms of 1mm. Parts on front of bunch center (z < 0) are discarded.

horizontal and vertical center-of-mass motion

25

2. Beam dynamics in ATF damping ring

Transverse instability

Fourier Transform of mean horizontal and vertical positions of the beam for different beam currents m=0 mode has shifted to higher tunes as the beam currents increase.

Mode m=-1 and mode m=1 are shown clearly.

Chromaticity : 0.1 Q_x =0.145, Q_y =0.285 ω_s = 1 x 10⁻³.

26

26

RF phase modulation

increased beam lifetime by a factor of 1.5 by bunch-lengthening

$$\begin{aligned} \textbf{V}_{rf} &= \overline{\textbf{V}_o} \ \cos \left(\phi_o - \omega_{rf} \tau + \phi_m \right) \\ \phi_m &= \phi_{mo} \ \cos(\omega_m T_o) \\ (\phi_{mo} &= 5 \ \text{deg.} \ , \ \omega_m = 2 \ \text{x} \ 9.34 \ \text{kHz}) \end{aligned}$$

simulation result **Streak camera image** of the RF phase modulation

of the RF phase modulation

Operation and simulation beam lifetimes

From the simulation results

Beam-gas scattering lifetime: 290 h

Beam-gas Bremsstrahlung lifetime: 460 h

Touscheck lifetime: 18 h

Estimation of ring impedance from bunch-lengthening

Resistive impedance : $R = 743 \Omega \pm 84\Omega$

Inductive impedance : L= 13.7 nH \pm 3.5 nH

Measured bunch shapes (squares) and their fits (black lines) to the Haissinski solution of a series R+L impedance 29

Lattice design for short-bunch length

Lattice for 1 ps bunch length

Bunch length vs momentum compaction factor

Lattice for 28 ps nominal bunch length

Lattice design for a lower emittance

 $\varepsilon = 13 \text{ nm} \text{ (cf : 18.9 nm @ 2.5 GeV)}$

Tune survey for large dynamic aperture

4. Beam dynamics in Energy Recovery Linac

Lattice from merger to beam dump

Main parameters

Beam energy : 205 MeV Average beam current : 100 mA

Bunch charge : 77 pC Injection beam energy : 5 MeV

RF frequency : 1.296 GHz Harmonic number : 320

Rms bunch length : 1 ps Rms energy spread : 3 x10⁻⁴

Number of rf cavity units: 10 RF cavity length : 1 m

RF cavity gradient : 20 MV /m Momentum compaction : 10⁻⁵

Normalized emittance (x/y): 0.1 / 0.1 mm mrad

Length of Bends : 60 cm Length of quadrupole : 15cm/20cm

Lattice design

Momentum compaction factor: 10⁻⁵

Beam tracking for 320 bunches with cavity HOMs

```
q=37pC, \sigma_z = 1 psec, \epsilon_{nx}=0.1 mm mrad R/Q=23.8x10<sup>4</sup>, fr=2.57535x10<sup>9</sup>, Q=5x10<sup>4</sup> R/Q=8.69x10<sup>4</sup>, fr=1.8722x10<sup>9</sup>, Q=7x10<sup>4</sup> R/Q=6.54x10<sup>4</sup>, fr=1.8643x10<sup>9</sup>, Q=5x10<sup>4</sup>
```


increased by factor of ~5

5. Beam dynamics in Free Electron Linac

Lattice for 10 GeV linac

Radiation power as a function of the undulator length.

Longitudinal beam distributions (a) from the injector, (b) from the BC1, (c) from the BC2, (d) from the entrance of undulator.

5. Beam dynamics in Free Electron Linac

peak beam current in 2nd bunch compressor.

4.0x10⁻⁵

slice beams at the entrance of the undulator at 10 GeV

Summary

We showed beam dynamics studies in ring and linac.

- **Existing R&D items on beam dynamics and diagnostics with IHEP**
 - Beam instabilities with Prof. Haisehng Xu
 - : invited (Feb. 24) to KU and visited (June. 24) to IHEP
 - are discussing with Prof. Yanfeng Sui on beam measurements for commissioning in HEPS.
 - We have an oral talk on "resistive wall instabilities in CEPC"
 in 2024 International workshop on High Energy CEPC (Oct. 22-24)
 - O