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Outline



• Characteristics of 4th Generation Synchrotron Radiation Light Sources

• Higher Brightness and Coherence Synchrotron Radiation

• Importance of Injector System Design

• The injector prepares and delivers electron beams to the main accelerator.

• Ensures high-quality beam parameters: emittance, energy spread, and bunch length.

• Challenges in Injector Design

• Requires precise control over multiple variables (e.g., RF phases, magnet strengths).

• Ensuring beam stability and consistency is critical for optimal synchrotron performance.

• Why Optimization Matters

• Manual tuning of parameters is slow and imprecise.

• Automated optimization helps achieve the best beam quality while minimizing energy loss and errors.
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Motivation: Electron Injector Design and Optimization



• Numerous parameters (knobs) must be considered in the design and operation of an accelerator system.

• These parameters of the accelerator system should be optimized to meet the requirements and achieve the best 
performance.

• Manual search of these parameters is essentially an optimization process. 

• The function to be optimized is the performance evaluated on the operating or designing system through measurements or 
simulations. 

• The knobs are the input variables of the function.

• The operator or designer of the system executes an optimization algorithm to search the parameter space 
for the optimum of the performance function. 

• However, this manual tuning has many limitations. 

• It is typically slow for humans to dial in the new setpoints, to process the measured/simulation data, and to make 
decisions on the next move. 

• The complexity of the optimization problem is usually limited by the ability of humans to analyze and 
comprehend the data taken from a high dimension parameter space.
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Motivation: Optimizations in Accelerator Designs



• It is obviously easy to automate the optimization process using computational tools. 

• Automated optimization integrates all the three components 
• Parameter variations

• Performance monitoring

• Selection of optimal parameters 

• This is possible using various mathematical optimization algorithms.

• Optimization of large-scale problems with complex parameter space becomes feasible.
• For example, strongly coupled parameters

• Simultaneous optimization of multiple objective performance functions is also possible.
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Computerized Optimizations



• Optimization is looking for the maximum or 
minimum of the objective function(s) within a 
certain parameter space.

• The objective function is not usually given in an 
analytic form. 

• Instead, the function is evaluated through 
measurements on a machine or calculated through a 
computer program(simulation)

• The system to be optimized can be considered as a 
black-box.

• The relevant conditions of the system are 
controlled through the input variables(parameters)

• Constraints can be set conditions for the variables 
that are required to be satisfied.

• Objectives

min𝑓𝑚(𝑥),    𝑚 = 1,⋯ ,𝑀

• Variables

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈, 𝑖 = 1,⋯ ,𝑁

• Constraints

𝑔𝑗(𝑥) ≤ 0,    𝑗 = 1,⋯ , 𝐽

ℎ𝑘 𝑥 = 0,    𝑘 = 1,⋯ , 𝐾
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Optimization Methods

System

𝒇(𝒙)

𝑥1

𝑥2

𝑥𝑁

⁞

𝑦1 = 𝑓1(𝒙)

𝑦2 = 𝑓2(𝒙)

𝑦𝑀 = 𝑓𝑀(𝒙)

⁞



• Deterministic Algorithm
• The convergence path from any initial point is fixed

• Gradient-Based/Gradient-Free

• Stochastic Algorithm
• Randomly selects the parameter values of the trial solution.

• The convergence path is different every time.

• Genetic Algorithm

• Particle Swarm Optimization

• Model-Based Optimization – Machine Learning
• Builds models with the measurement/simulation data and use the models to guide the search for the optimum

• Gaussian Process Optimizer

• Multi-Generation Gaussian Process Optimizer

• Reinforcement Learning
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Optimization Algorithms



• SOO: Injector Lattice Optimization

• Beam Dynamics Simulation: Track

• Optimization Library: NLopt

• SOO: Magnetic Fields Ramp Optimization

• Beam Dynamics Simulation: Synergia

• Optimization Library: NLopt

• SOO and MOO: Cavity Design

• Cavity Design: SuperFish

• Optimization Library: NLopt and pymoo

• SOO and MOO: Linac Beam Dynamics Optimization

• Beam Dynamics Simulation: astra

• Optimization Library: NLopt and pymoo

• User created Python or R scripts for integrating 
simulation codes and optimization libraries.
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Accelerator Optimization Simulation Examples

Single-Objective Optimization (SOO) and Multi-Objective Optimization (MOO)



• Genetic algorithms manipulate populations of solutions over multiple generations.

• In each generation, a portion of the population is replaced by a good solution selected from 
a new solution created through cross-over or mutation.

• In a cross-over operation, two child solutions are created by combining the parameter 
values of the two parent solutions.

• Mutation operation generates new solutions by randomly modifying the parameter values 
of existing solutions.

• The solution that survives the selection operation is usually better and tends to produce 
better new solutions.

• The fitness of the solution improves over time and the population gradually converges to a 
minimum.

• The leading front for all valid solutions in the parameter space is called the Pareto front. 

• Solutions in the Pareto front represents the best possible solutions. 

• The Pareto optimal set (or front) allows us to visualize the trade-off between the objectives

• The goal of multi-objective optimization is to find the Pareto front.
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Multi-Objective Genetic Algorithm (MOGA)

Generate Population

Evaluation

Survival

Selection

Cross-over

Mutation
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Design of Electron Injection System for 4GSR

RF Gun

Solenoid Accelerating Cavity Quadrupole Quadrupole

Parameters Values

Energy 200 MeV

Frequency 2,997.56±0.5 MHz

Emittance @ 200 MeV < 10 nm

Relative Energy Spread (rms) < 0.5 %

Bunch Charge (Charge Stability) 0.01 to 1 nC (2 %)

Pulse Duration 6~8 ps FWHM

Repetition Rate 2 Hz (60 Hz)

• Two-Step Design and Optimization

• RF cavity geometries: Superfish and pymoo
• RF photoinjector gun cavity
• Accelerating cavities

• Linac Parameters: Astra and pymoo
• RF cavity input phases and gradients
• Magnet strengths



Objectives Units

R/Q Maximization Ω

Stored Energy Minimization J
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Design and Optimization of RF Cavities

Constraints Units

Frequency 2,997.56 ± 0.5 MHz

Transit Time Factor > 0.6

Quality Factor > 14,000

Variables Units

Cell Length (d) m

Gap Length (r1*2) m

Aperture Radius (a) m

Inner Radius (b) m

Cell Radius (r2) m

MOGA Parameters

Population 300

Offspring 150

Generation 200

RF Photoinjector Gun Cavity

Accelerating Cavity



Cell Number Frequency (MHz) TTF Stored Energy (MeV) Q Rs (Ω) R/Q (Ω)

1.4 2,997.561 0.715049 0.001998 16,808.0 47.280 155.042

1.5 2,997.488 0.692018 0.001637 18,008.7 64.148 179.999

1.6 2,997.488 0.615029 0.001512 18,476.6 71.472 168.362
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Optimization of the RF Gun Cavity Using MOGA

Beam Dynamics Optimization
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Design and Optimization of RF Accelerating Cavity

Parameters Gun Cavity Accelerating Cavity Units

R/Q 179.446 131.779 Ω

Stored Energy 0.001638 0.0001035 J

Frequency 2,997.59 2,997.45 MHz

TTF 0.6920 0.7012

Quality Factor 18,008.7 13,151.5

RF Photoinjector Gun Cavity Accelerating Cavity
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Objectives (3) Units

Horizontal Normalized RMS Emittance Minimization mm-mrad

Vertical Normalized RMS Emittance Minimization mm-mrad

RMS Energy Spread Minimization
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Optimization of Linac Design Parameters

Variables (6) Ranges Units

RF Gun Cavity Input Phase 0 ~ 360 Degree

ACC Cavity 1 & 2 Input Phase 0 ~ 360 Degree

ACC Cavity 3 & 4 Input Phase 0 ~ 360 Degree

Solenoid Strength 0.1 ~ 0.3 T

Quadrupole 1 Strength 0 ~ 10 T/m

Quadrupole 2 Strength -10 ~ 0 T/m

MOGA Parameters

Population 500

Offspring 250

Generation 300

Constraints (7) Units

Horizontal Beam Size < 0.3 mm

Vertical Beam Size < 0.3 mm

Horizontal Beam Divergence < 0.266 mrad

Vertical Beam Divergence < 0.266 mrad

Bunch Length < 1.0 Mm

Average Energy 200 MeV

Transmission Rate > 99.99 %

RF Gun

Solenoid Accelerating Cavity Quadrupole Quadrupole
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Optimization Processes

Constraint Violation

Hyper-Volume

Constraints Space
generation

Objective Space
generation generation

generation

Constraints Space

Objective Space
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Optimization Results

Parameters Requirements Optimized Units

Beam Energy > 200 201 MeV

Bunch Length < 7 6.35 ps

Transverse RMS Emittance < 10 9.69 nm

RMS Beam Size < 0.2 0.1997 mm

RMS Energy Spread < 0.2 0.165 %



Energy Spread Emittance X Emittance Y

Case 1 0.5 0.25 0.25

Case 2 0.8 0.1 0.1

Case 3 0.3 0.35 0.35
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Weights on Optimization Results

Case 1

Case 2

Case 3

Case 1

Case 2

Case 3

Weights

Object Spaces

Constraint Spaces
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Beam Dynamics Simulations of Selected Cases

<E> 𝝈𝑬 𝜺𝒙
𝑵 𝜺𝒙 𝜺𝒚

𝑵 𝜺𝒚 𝝈𝒙 𝝈𝒚 Lbunch

Units MeV keV mm-mrad nm mm-mrad nm mm mm mm

Case 1 200.16 381.50 3.2990 8.44 3.2145 8.18 0.21760 0.26149 0.96584

Case 2 200.61 372.17 3.7122 9.52 3.8144 9.71 0.29162 0.29447 0.95932

Case 3 200.92 411.98 2.8520 7.37 2.8147 7.21 0.28593 0.28566 0.98924
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Error Study

Parameters Sigma Units

RF Gun Cavity Gradient 0.2 %

Input Phase 0.2 Degree

Accelerating Cavity Gradient 0.2 %

Input Phase 0.2 Degree

Solenoid Strength 0.1 %

Quadrupole Strength 0.1 %

Target

Energy Spread < 0.5 %

Average Energy < 0.2 %

Position Offset in X & Y < 10 %

• Error Cut-Off: 2 Sigma (Gaussian)
• Random Numbers: 1,000

RF Gun

Solenoid Accelerating Cavity Quadrupole Quadrupole
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Error Study Results

<E> 𝝈𝑬 𝜺𝒙
𝑵 𝜺𝒚

𝑵 𝝈𝒙 𝝈𝒚 X Offset Y Offset Lbunch

Units MeV keV mm-mrad mm-mrad mm mm mm mm mm

Case 1 0.1762 4.7003 0.2091 0.8356 0.0253 0.0247 0.00067 0.00043 0.0044

Case 2 0.1749 7.2553 0.2251 0.8033 0.0268 0.0248 0.00062 0.00046 0.0043

Case 3 0.1756 29.5605 0.2105 0.8602 0.0227 0.0261 0.00049 0.0004 0.0045



• Complex optimization problems in design of accelerator systems with multi-objective goals, are solvable through methods 

like Genetic Algorithms and Machine Learning models.

• Optimized design parameters for RF Gun and Accelerating Cavities achieved desired performance levels.

• The injector system met or exceeded performance benchmarks: beam energy of 200 MeV, transverse RMS emittance 

below 10 nm, and bunch length under 7 ps.

• Simulations confirm that constraints were met with high accuracy.

• The injector system exhibits resilience to small errors, with minimal impact on critical parameters like energy spread and 

beam size.

• Further optimization using advanced algorithms, potentially involving reinforcement learning and Bayesian optimization, 

etc., can yield even better system performance.

• Application to other accelerator systems can lead to broader advancements in accelerator technology.
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Summary
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