

# Injector System Design for the 4th Generation Synchrotron Radiation Accelerators

- KU-IHEP Joint Workshop -

Chong Shik Park

Department of Accelerator Science/Accelerator Physics Center

Korea University, Sejong



### **Outline**

- Motivations
- Computerized Optimizations
- Design and Optimization of Electron Injection System
- Optimization Processes and Results
- Error Study and Results
- Summary

\* Acknowledgement: Dr. Chanmi Kim of PAL



## **Motivation: Electron Injector Design and Optimization**

- Characteristics of 4th Generation Synchrotron Radiation Light Sources
  - Higher Brightness and Coherence Synchrotron Radiation
- Importance of Injector System Design
  - The injector prepares and delivers electron beams to the main accelerator.
  - Ensures high-quality beam parameters: emittance, energy spread, and bunch length.
- Challenges in Injector Design
  - Requires precise control over multiple variables (e.g., RF phases, magnet strengths).
  - Ensuring beam stability and consistency is critical for optimal synchrotron performance.
- Why Optimization Matters
  - Manual tuning of parameters is slow and imprecise.
  - Automated optimization helps achieve the best beam quality while minimizing energy loss and errors.



## **Motivation: Optimizations in Accelerator Designs**

- Numerous parameters (knobs) must be considered in the design and operation of an accelerator system.
  - These parameters of the accelerator system should be optimized to meet the requirements and achieve the best performance.
- Manual search of these parameters is essentially an optimization process.
  - The function to be optimized is the performance evaluated on the operating or designing system through measurements or **simulations**.
  - The knobs are the input variables of the function.
- The operator or designer of the system executes an optimization algorithm to search the parameter space for the optimum of the performance function.
  - However, this manual tuning has many limitations.
  - It is typically slow for humans to dial in the new setpoints, to process the measured/simulation data, and to make decisions on the next move.
- The complexity of the optimization problem is usually limited by the ability of humans to analyze and comprehend the data taken from a high dimension parameter space.



## **Computerized Optimizations**

- It is obviously easy to automate the optimization process using computational tools.
- Automated optimization integrates all the three components
  - Parameter variations
  - Performance monitoring
  - Selection of optimal parameters
- This is possible using various mathematical optimization algorithms.
- Optimization of large-scale problems with complex parameter space becomes feasible.
  - For example, strongly coupled parameters
- Simultaneous optimization of multiple objective performance functions is also possible.



## **Optimization Methods**

- Optimization is looking for the maximum or minimum of the objective function(s) within a certain parameter space.
- The objective function is not usually given in an analytic form.
  - Instead, the function is evaluated through measurements on a machine or calculated through a computer program(simulation)
  - The system to be optimized can be considered as a black-box.
- The relevant conditions of the system are controlled through the input variables(parameters)
- Constraints can be set conditions for the variables that are required to be satisfied.

Objectives

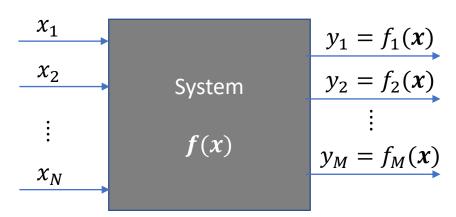
$$\min f_m(x), \quad m = 1, \cdots, M$$

Variables

$$x_i^L \le x_i \le x_i^U$$
,  $i = 1, \dots, N$ 

Constraints

$$g_j(x) \le 0$$
,  $j = 1, \dots, J$   
 $h_k(x) = 0$ ,  $k = 1, \dots, K$ 





## **Optimization Algorithms**

#### Deterministic Algorithm

- The convergence path from any initial point is fixed
- Gradient-Based/Gradient-Free

#### Stochastic Algorithm

- Randomly selects the parameter values of the trial solution.
- The convergence path is different every time.
- Genetic Algorithm
- Particle Swarm Optimization

#### Model-Based Optimization – Machine Learning

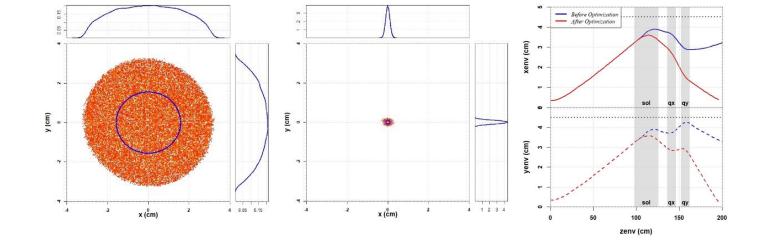
- Builds models with the measurement/simulation data and use the models to guide the search for the optimum
- Gaussian Process Optimizer
- Multi-Generation Gaussian Process Optimizer
- Reinforcement Learning

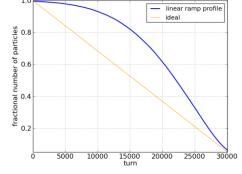


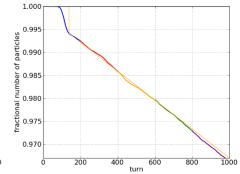
## **Accelerator Optimization Simulation Examples**

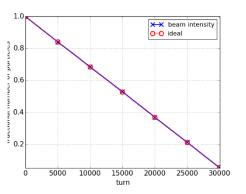
Single-Objective Optimization (SOO) and Multi-Objective Optimization (MOO)

- SOO: Injector Lattice Optimization
  - Beam Dynamics Simulation: Track
  - Optimization Library: NLopt
- SOO: Magnetic Fields Ramp Optimization
  - Beam Dynamics Simulation: Synergia
  - Optimization Library: NLopt
- SOO and MOO: Cavity Design
  - Cavity Design: SuperFish
  - Optimization Library: NLopt and pymoo
- SOO and MOO: Linac Beam Dynamics Optimization
  - Beam Dynamics Simulation: astra
  - Optimization Library: NLopt and pymoo
- User created Python or R scripts for integrating simulation codes and optimization libraries.





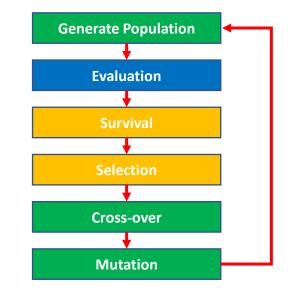


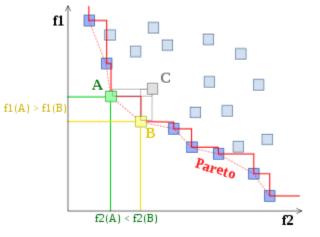




# Multi-Objective Genetic Algorithm (MOGA)

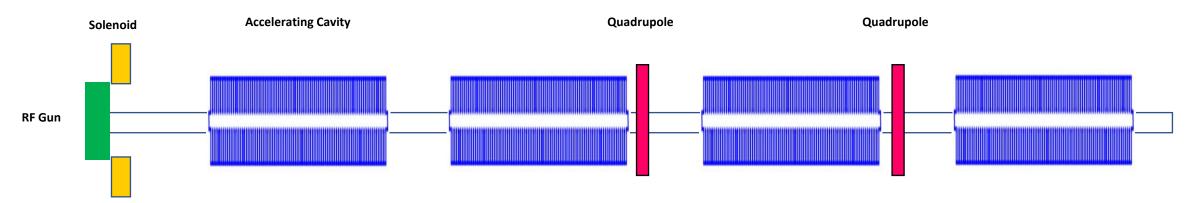
- Genetic algorithms manipulate populations of solutions over multiple generations.
- In each generation, a portion of the population is replaced by a good solution selected from a new solution created through **cross-over or mutation**.
- In a **cross-over operation**, two child solutions are created by combining the parameter values of the two parent solutions.
- Mutation operation generates new solutions by randomly modifying the parameter values of existing solutions.
- The solution that survives the selection operation is usually better and tends to produce better new solutions.
- The fitness of the solution improves over time and the population gradually converges to a minimum.
- The leading front for all valid solutions in the parameter space is called **the Pareto front**.
  - Solutions in the Pareto front represents the best possible solutions.
  - The Pareto optimal set (or front) allows us to visualize the trade-off between the objectives
  - The goal of multi-objective optimization is to find the Pareto front.







# **Design of Electron Injection System for 4GSR**



- Two-Step Design and Optimization
- RF cavity geometries: Superfish and pymoo
  - RF photoinjector gun cavity
  - Accelerating cavities
- Linac Parameters: Astra and pymoo
  - RF cavity input phases and gradients
  - Magnet strengths

| Values             |
|--------------------|
| 200 MeV            |
| 2,997.56±0.5 MHz   |
| < 10 nm            |
| < 0.5 %            |
| 0.01 to 1 nC (2 %) |
| 6~8 ps FWHM        |
| 2 Hz (60 Hz)       |
|                    |



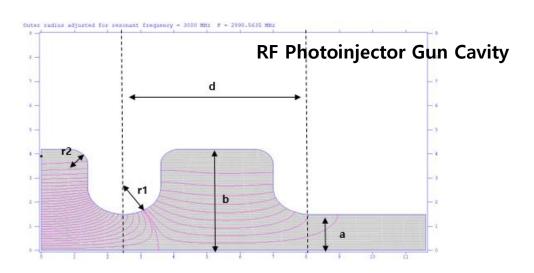
# **Design and Optimization of RF Cavities**

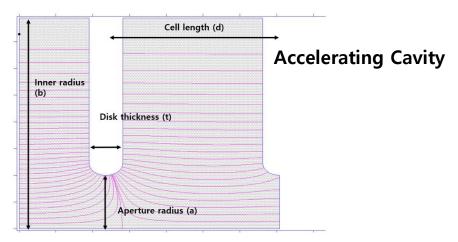
| Objectives    |              | Units |
|---------------|--------------|-------|
| R/Q           | Maximization | Ω     |
| Stored Energy | Minimization | J     |

| Constraints         |                | Units |
|---------------------|----------------|-------|
| Frequency           | 2,997.56 ± 0.5 | MHz   |
| Transit Time Factor | > 0.6          |       |
| Quality Factor      | > 14,000       |       |

| Variables           | Units |
|---------------------|-------|
| Cell Length (d)     | m     |
| Gap Length (r1*2)   | m     |
| Aperture Radius (a) | m     |
| Inner Radius (b)    | m     |
| Cell Radius (r2)    | m     |

| MOGA Parameters |     |
|-----------------|-----|
| Population      | 300 |
| Offspring       | 150 |
| Generation      | 200 |



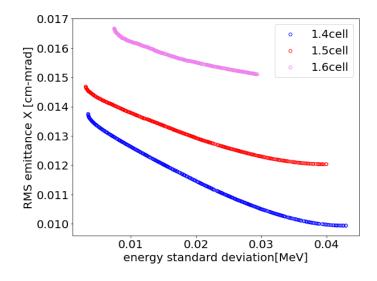


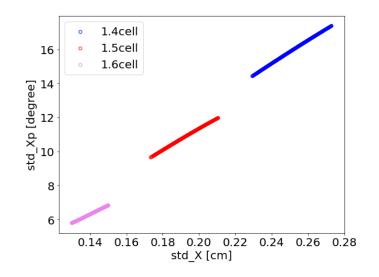


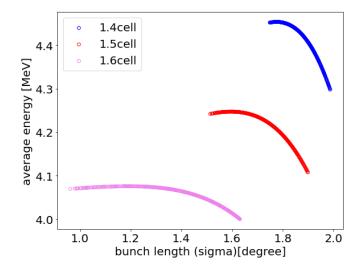
## **Optimization of the RF Gun Cavity Using MOGA**

#### **Beam Dynamics Optimization**

| Cell Number | Frequency (MHz) | TTF      | Stored Energy (MeV) | Q        | R <sub>s</sub> (Ω) | R/Q (Ω) |
|-------------|-----------------|----------|---------------------|----------|--------------------|---------|
| 1.4         | 2,997.561       | 0.715049 | 0.001998            | 16,808.0 | 47.280             | 155.042 |
| 1.5         | 2,997.488       | 0.692018 | 0.001637            | 18,008.7 | 64.148             | 179.999 |
| 1.6         | 2,997.488       | 0.615029 | 0.001512            | 18,476.6 | 71.472             | 168.362 |

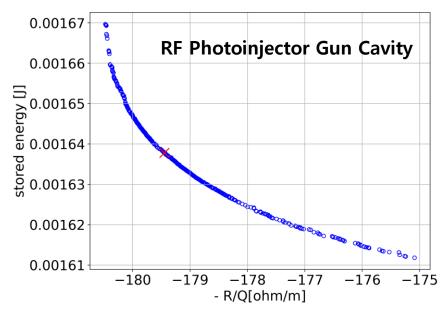


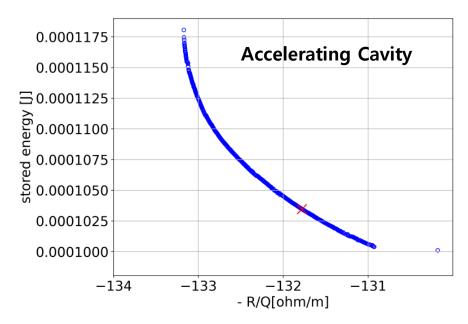






# **Design and Optimization of RF Accelerating Cavity**

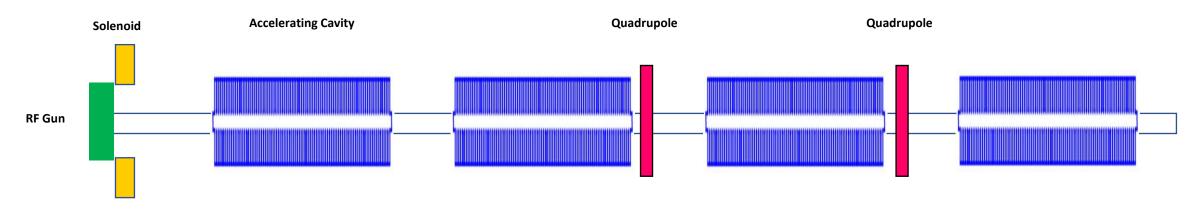




| Parameters     | Gun Cavity | Accelerating Cavity | Units |
|----------------|------------|---------------------|-------|
| R/Q            | 179.446    | 131.779             | Ω     |
| Stored Energy  | 0.001638   | 0.0001035           | J     |
| Frequency      | 2,997.59   | 2,997.45            | MHz   |
| TTF            | 0.6920     | 0.7012              |       |
| Quality Factor | 18,008.7   | 13,151.5            |       |



# **Optimization of Linac Design Parameters**



| Objectives (3)                      |              | Units   |
|-------------------------------------|--------------|---------|
| Horizontal Normalized RMS Emittance | Minimization | mm-mrad |
| Vertical Normalized RMS Emittance   | Minimization | mm-mrad |
| RMS Energy Spread                   | Minimization |         |
|                                     |              |         |

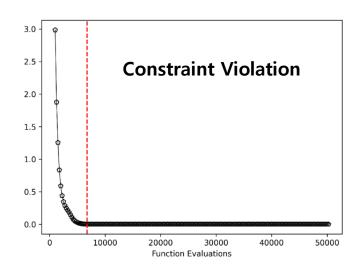
| Constraints (7)            |         | Units |
|----------------------------|---------|-------|
| Horizontal Beam Size       | < 0.3   | mm    |
| Vertical Beam Size         | < 0.3   | mm    |
| Horizontal Beam Divergence | < 0.266 | mrad  |
| Vertical Beam Divergence   | < 0.266 | mrad  |
| Bunch Length               | < 1.0   | Mm    |
| Average Energy             | 200     | MeV   |
| Transmission Rate          | > 99.99 | %     |

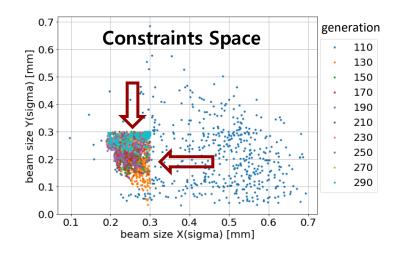
| Variables (6)                | Ranges    | Units  |
|------------------------------|-----------|--------|
| RF Gun Cavity Input Phase    | 0~360     | Degree |
| ACC Cavity 1 & 2 Input Phase | 0 ~ 360   | Degree |
| ACC Cavity 3 & 4 Input Phase | 0~360     | Degree |
| Solenoid Strength            | 0.1 ~ 0.3 | Т      |
| Quadrupole 1 Strength        | 0~10      | T/m    |
| Quadrupole 2 Strength        | -10 ~ 0   | T/m    |

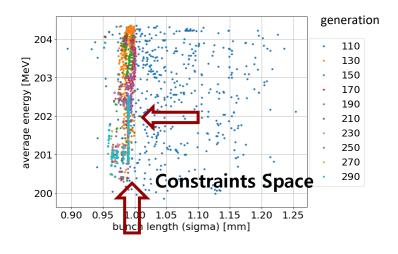
|        | MOGA Parameters |     |
|--------|-----------------|-----|
|        | Population      | 500 |
|        | Offspring       | 250 |
| Univer | Generation      | 300 |

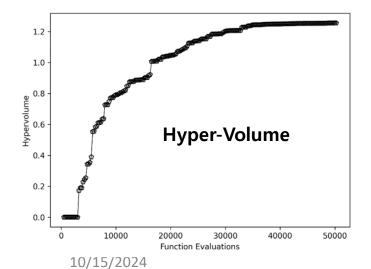


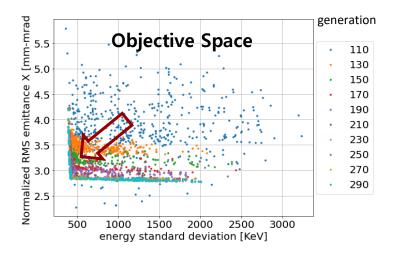
## **Optimization Processes**

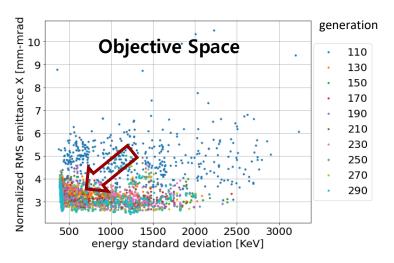








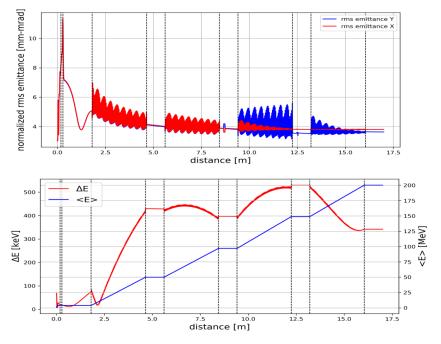




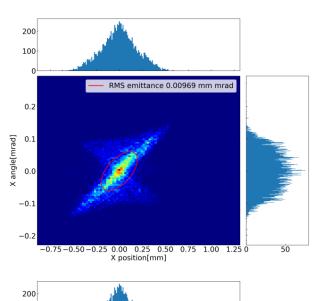
Chong Shik Park, Ph.D | Korea University | KU-IHEP Joint Workshop

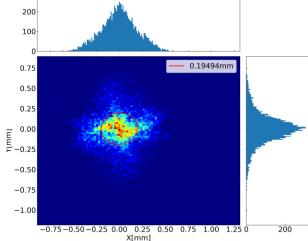


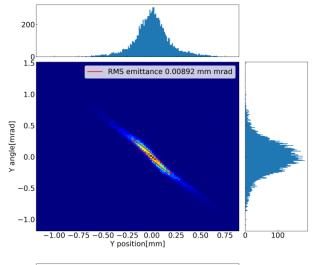
# **Optimization Results**

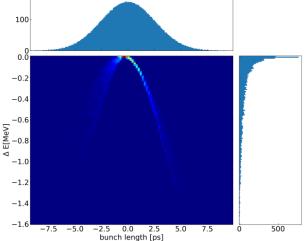


| Parameters               | Requirements | Optimized | Units |
|--------------------------|--------------|-----------|-------|
| Beam Energy              | > 200        | 201       | MeV   |
| Bunch Length             | < 7          | 6.35      | ps    |
| Transverse RMS Emittance | < 10         | 9.69      | nm    |
| RMS Beam Size            | < 0.2        | 0.1997    | mm    |
| RMS Energy Spread        | < 0.2        | 0.165     | %     |





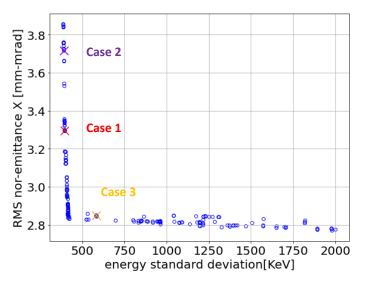


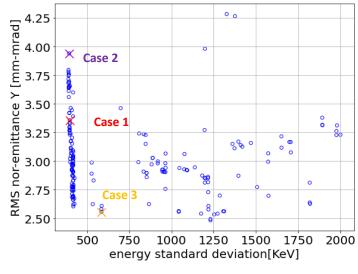




# **Weights on Optimization Results**

#### **Object Spaces**

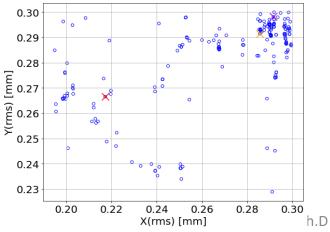


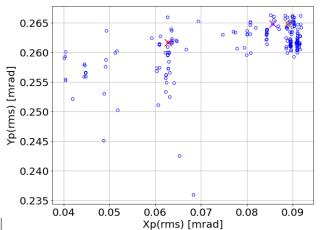


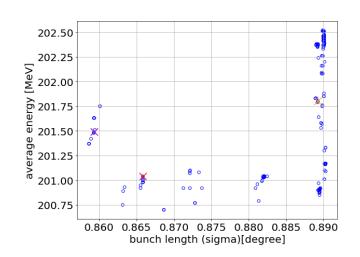
#### Weights

|        | Energy Spread | Emittance X | Emittance Y |
|--------|---------------|-------------|-------------|
| Case 1 | 0.5           | 0.25        | 0.25        |
| Case 2 | 0.8           | 0.1         | 0.1         |
| Case 3 | 0.3           | 0.35        | 0.35        |

#### **Constraint Spaces**



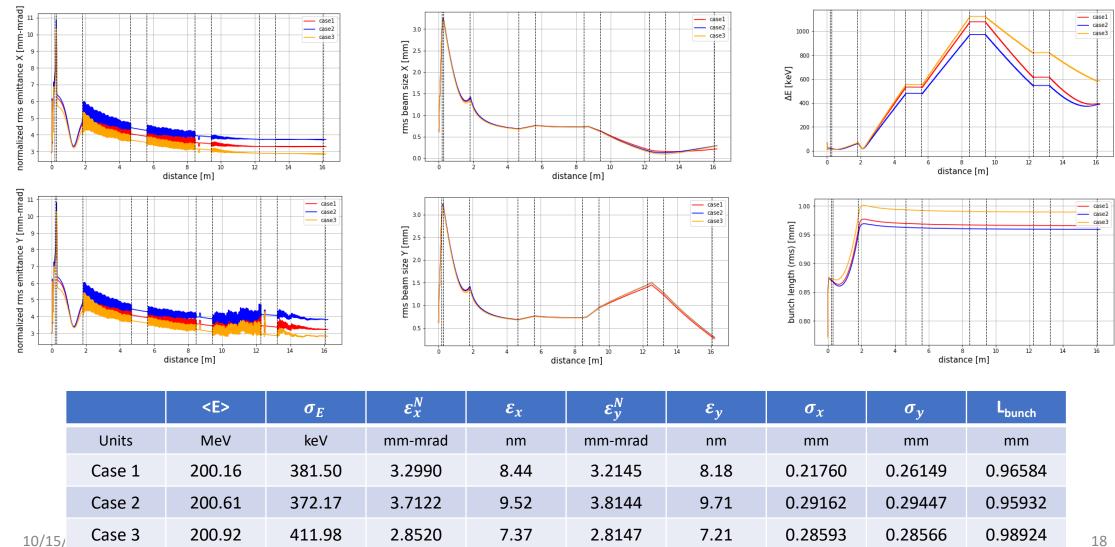




10/15/2024

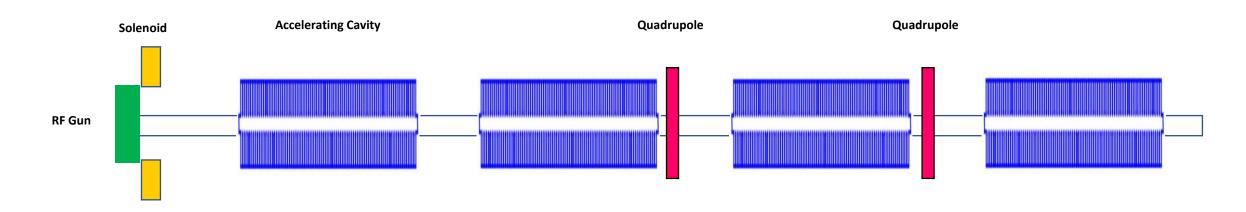


## **Beam Dynamics Simulations of Selected Cases**





# **Error Study**



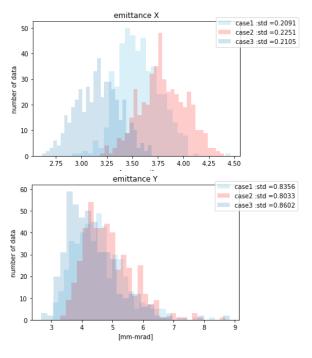
| Parameters          |             | Sigma | Units  |
|---------------------|-------------|-------|--------|
| RF Gun Cavity       | Gradient    | 0.2   | %      |
|                     | Input Phase | 0.2   | Degree |
| Accelerating Cavity | Gradient    | 0.2   | %      |
|                     | Input Phase | 0.2   | Degree |
| Solenoid            | Strength    | 0.1   | %      |
| Quadrupole          | Strength    | 0.1   | %      |

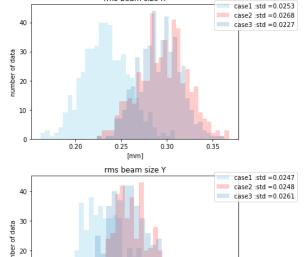
| Target                   |       |   |
|--------------------------|-------|---|
| Energy Spread            | < 0.5 | % |
| Average Energy           | < 0.2 | % |
| Position Offset in X & Y | < 10  | % |

- Error Cut-Off: 2 Sigma (Gaussian)
- Random Numbers: 1,000



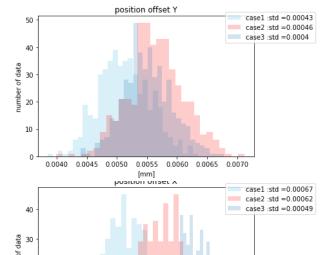
# **Error Study Results**

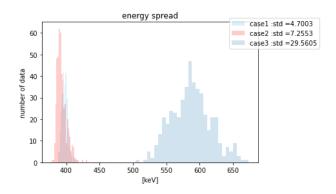




0.200 0.225 0.250 0.275 0.300 0.325 0.350 0.375

rms beam size X





|    |        | <e></e> | $\sigma_E$ | $oldsymbol{arepsilon}_{\chi}^{N}$ | $oldsymbol{arepsilon_y^N}$ | $\sigma_{x}$ | $\sigma_y$ | X Offset | Y Offset | L <sub>bunch</sub> |
|----|--------|---------|------------|-----------------------------------|----------------------------|--------------|------------|----------|----------|--------------------|
|    | Units  | MeV     | keV        | mm-mrad                           | mm-mrad                    | mm           | mm         | mm       | mm       | mm                 |
|    | Case 1 | 0.1762  | 4.7003     | 0.2091                            | 0.8356                     | 0.0253       | 0.0247     | 0.00067  | 0.00043  | 0.0044             |
|    | Case 2 | 0.1749  | 7.2553     | 0.2251                            | 0.8033                     | 0.0268       | 0.0248     | 0.00062  | 0.00046  | 0.0043             |
| 0/ | Case 3 | 0.1756  | 29.5605    | 0.2105                            | 0.8602                     | 0.0227       | 0.0261     | 0.00049  | 0.0004   | 0.0045             |

횯 20

-0.003

-0.002

-0.001

[mm]

0.000

0.001



## **Summary**

- Complex optimization problems in design of accelerator systems with multi-objective goals, are solvable through methods like Genetic Algorithms and Machine Learning models.
- Optimized design parameters for RF Gun and Accelerating Cavities achieved desired performance levels.
- The injector system met or exceeded performance benchmarks: beam energy of 200 MeV, transverse RMS emittance below 10 nm, and bunch length under 7 ps.
- Simulations confirm that constraints were met with high accuracy.
- The injector system exhibits resilience to small errors, with minimal impact on critical parameters like energy spread and beam size.
- Further optimization using advanced algorithms, potentially involving reinforcement learning and Bayesian optimization, etc., can yield even better system performance.
- Application to other accelerator systems can lead to broader advancements in accelerator technology.