Exotic Hadron Spectroscopy with Photon and Hadron Beams Searching for multiquark and glueball states Jung Keun Ahn (Korea University) ### Outline - Multiquarks and Molecular States (involving Light Quarks) - Pentaquarks - Dibaryons - Glueballs ### MULTIQUARKS AND MOLECULAR **STATES** ### The (Clustered) Structure of Matter ### **Quarks and Hadrons** O Color force saturation binds quarks as a form of colorless hadrons. ### Nucleons and α Cluster Spin-Isospin force saturation binds nucleons as a form of scalar α clusters. ### **Quark Bound States** ### Dibaryon and Hexaquark States - \bigcirc Bound state (color singlet) with two \triangle baryons - Bound state (color singlet) with two color octet baryons (each individual cluster cannot exist) - Bound state (color singlet) with six independent quarks ### Baryons in the Quark Model - If we combine the spin and the flavor degrees of freedom to an SU(6) spin-flavor symmetry, each quark can be in one of the six different states: $u \uparrow, u \downarrow, d \uparrow, d \downarrow, s \uparrow, s \downarrow.$ - For baryons, one can make the following direct product: It is possible to decompose the multiplets into their $SU(2) \otimes SU(3)$ content. ### Low-lying Hyperons in the Quark Model | $\overline{J^p}$ | (D, L_N^P) | Octets | | | Singlet | |------------------|---------------|------------------------|-----------------------|-------------|-----------------| | 1/2+ | $(56, 0_0^+)$ | $\Lambda(1116)$ | $\Sigma(1193)$ | 至(1318) | | | $1/2^{+}$ | $(56, 0_2^+)$ | $\Lambda(1600)^{***}$ | $\Sigma(1660)^{***}$ | $\Xi(?)$ | | | $1/2^{-}$ | $(70,1_1^-)$ | $\Lambda(1670)^{****}$ | $\Sigma(1620)^*$ | $\Xi(1690)$ | $\Lambda(1405)$ | | 3/2- | $(70,1_1^-)$ | Λ(1690)**** | $\Sigma(1670)^{****}$ | 王(1820) | $\Lambda(1520)$ | | Jр | (D,L_N^P) | | Decuplets | | |------|---------------|----------------|-----------|----------------| | 3/2+ | $(56, 0_0^+)$ | $\Sigma(1385)$ | 至(1530) | $\Omega(1672)$ | ### Λ^* and Σ^* Resonances ### Toward Drip Line of Multiquark States ### **Multiquark States** - O An exotic hadron is a state that cannot be classified in terms of standard qqq or $q\overline{q}$ configurations according to $SU_f(3)$ irreducible representations: multiquark states $(qq\overline{qq}, qqqq\overline{q}, 6q, \text{ and so on})$. - The existence of multiquark hadrons is now firmly established in the meson sector: tetraquark states such as XYZ states. - \bigcirc Recently, the LHCb collaboration claims on the observation of three hidden-charm pentaquark P_c states. - The observation of such many multiquark candidates poses a question on the dripline of further multiquark states: hexaquark state. **PENTAQUARKS** ### Pentaquark States in $\overline{SU(3)_f}$ Antidecuplets O For meson octet and baryon octet members, one can make the $SU(3)_f$ pentaquark multiplets: $$8 \otimes 8 = 1 \oplus 8_S \oplus 8_A \oplus 10 \oplus \overline{10} \oplus 27$$ ### Pentaquark States in SU(3)_f Antidecuplets The mass splitting between the members was predicted to be 180 MeV multiplied by their strangeness unit difference. This model prediction highlighted the low-mass and narrow width of the $\Theta^+(1540)$ and its spin-parity of $J^p = 1/2^+$ given as a rotating soliton. #### Θ^+ Searches - The $\Theta^+(uudd\bar{s})$ has been once firmly established by many experiments. - \bigcirc A high-statistics photoproduction JLab experiment found no evidence of the Θ^+ and other higher-statistics results have done likewise. Irrefutable evidence? #### Θ^+ Search at LEPS2 - LEPS2/SPring-8 looks for the Θ^+ via $\gamma d \to K^- K^0 pp$ reaction, followed by $\Theta^+ \to K^0 p$; $K^0(K_S) \to \pi^+ \pi^-$. - \bigcirc All final state particles can be reconstructed using LEPS2 detector, which facilitate a wider angular coverage for K^- detection. ### Θ^+ Formation in $K^+d \to K^0pp$ Reactions Direct Θ^+ formation in the $K^+d \to K^0pp$ reaction at 0.5 GeV/ c^{a} ### Pentaquark States in $SU(3)_f$ Antidecuplets - \bigcirc Exotic N^* states (P_s) can sit in the isospin doublet places in the new $\overline{10}$ multiplet. - If we assume a similar mass splitting between $P_{\overline{s}}$ and P_s states, $P_{\overline{s}}$ has a mass of 1.91 GeV a , which can be searched for in photoproduction. ^aG.S. Yang and S.-i. Nam in progress ## P_s Search via $\gamma p o \phi \pi^0 p/\phi \pi^+ n$ with LEPS2 - O Photoproduction of P_s with pion involves $\gamma p \to \pi^0 p \ (P_s^+)$ and $\gamma p \to \phi \pi^+ n \ (P_s^0)$ reactions. - O A simple event generator simulates $K^+K^-p\pi^0$ and $K^+K^-n\pi^+$ reactions involving ϕ , Δ , K^* , and P_s resonances. - Exotic meson $\rho(1570)$ $J^{PC} = 1^{--}$, earlier referred to as C(1480), could contribute to the $\gamma p \rightarrow \phi \pi N$ reactions (not included in the present simulation). ### P_s Search via Pion-induced Reactions - While *t*-channel dominates in $\gamma p \rightarrow \phi p$, *s* channel dominates in $\pi^- p \rightarrow \phi n$. - O The $\pi^- p$ reaction probes a P_s^0 , an *I*-doublet member with P_s^+ . - Theoretical calculation supports an s-channel dominance below 2.2 GeV/c (Sangho Kim). ### $\pi^- p \to \phi n$ at J-PARC - Only ϕ and Σ (1775) are included in $\pi^-p \to K^+K^-n$ reaction. - J-PARC P95 detector will detect two charged kaons and reconstruct a neutron by a missing-mass technique. ### The Most Promising Candidate in the Strange Sector ### H-dibaryon - \bigcirc : The H-Dibaryon (J=0, I=0) is a stable SU(3) $_f$ singlet hexaquark state consisting of *uuddss* quarks due to QCD color magnetic force. - H is named after Hexa-quark states. VOLUME 38, NUMBER 5 PHYSICAL REVIEW LETTERS 31 January 1977 #### Perhaps a Stable Dihyperon* R. L. Jaffet Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976) In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P=0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H*) with $J^P=1^+$ at 2335 MeV should appear as a bump in Λ 4 invariant-mass plots. Production and decay systematics of the H are discussed. ### Dibaryon Multiplets in SU(3)_f ### The History of H-Dibaryon Searches ``` 1977 • Deeply-bound di-hyperon predicted by R. Jaffe 1980-2000 ◆ No evidence for the deeply-bound H from KEK, BNL, • and CERN experimental efforts by more than 80 MeV 2001 Mass constraint from observation of ^{6}_{\Lambda\Lambda} He (E373) 1998,2007 • Enhanced \Lambda\Lambda production near threshold was reported from E224 and E522 at KEK-PS. 2011 • LQCD calculations predict the H-dibaryon near m_{\Lambda\Lambda} 2013-2015 • No evidence for H \to \Lambda p \pi^- and H \to \Lambda \Lambda in high-energy e^+e^-, pp and AA experiments 2021 LQCD calculations point to the mass the H-dibaryon very close to \Xi N threshold (m_{\pi} \approx 146 \text{ MeV}) 2021 • J-PARC E42 has successfully completed with HypTPC. 2024 • We are about to see what we would see in the E42 dataset. ``` ### H-Dibaryon Search at J-PARC: E42 The existence of the H-dibaryon still awaits definitive experimental confirmation or exclusion. - Weakly-bound : $H \to \Lambda p \pi^-$ - O Virtual state : $\Lambda\Lambda$ or Ξ^-p threshold effect - Resonance : Breit-Wigner peak in $\Lambda\Lambda$ and Ξ^-p masses ### J-PARC-E42 experiment - 1. in $\Lambda p \pi^-$, $\Lambda \Lambda$ and $\Xi^- p$ channels - **2.** by tagging the S = -2 system production - 3. via (K^-, K^+) reactions at 1.8 GeV/c with a diamond target - 4. with Hyperon Spectrometer : 1 MeV $\Lambda\Lambda$ mass resolution ### E42 Detector for the *H*-Dibaryon Search (K^-, K^+) reaction events are tagged by the K1.8 beam line and the KURAMA spectrometers. Decays of the S=-2 system are reconstructed using the Superconducting Hyperon Spectrometer. November 1, 2023 Slide 27 ### Hyperon Time Projection Chamber (HypTPC) - The HypTPC operation was relatively stable except two events stopping the E42 run shortly. - \bigcirc Event display for 0.4 GeV/c π^+ beam tracks accumulated in the calibration run. ### $^{12}\mathbf{C}(K^-,K^+)$ Reaction Event - Reconstructed K⁻ beam and outgoing K⁺ tracks share the vertex at the diamond target position. - $\, \bigcirc \,$ Two Vs are seen in the HypTPC and four decay particles hit the HTOF. November 1, 2023 Slide 29 ### **Scattered Particles at Forward Angles** \bigcirc We reconstructed the masses and momenta for scattered particles successfully with the forward K^+ spectrometer. ### Particle Identification with HypTPC - $\langle dE/dx \rangle_{20\% \text{ truncated vs } p/z \text{ for reconstructed HypTPC tracks in the diamond target dataset } (C(K^-, K^+)X)$ reactions). - $\sigma_{dE/dx}/\langle dE/dx \rangle \sim 20\%$ for the range $0.40 < p_T < 0.45$ GeV/c. ### $\Lambda\Lambda$ Production in the (K^-, K^+) Reactions ### Simulated $\Lambda\Lambda$ and Ξ^-p Mass Spectra ○ Simulated invariant-mass spectra for $H(2250) \rightarrow \Lambda \Lambda^a$ and $H(2265) \rightarrow \Xi^- p$ decays. b ^aSimulation on two-step processes is based on INC calculation by Y. Nara, A. Ohnishi, T. Harada and A. Engel, Nucl. Phys. A614 (1997) 433. Simulated $\Lambda\Lambda$ Spectrum for H(2250) assuming $d\sigma/d\Omega=1.0~\mu b/sr$. Simulated $\Xi^- p$ Spectrum for H(2265) assuming $d\sigma/d\Omega = 1.0 \ \mu \text{b/sr}$. ### $\overline{p}p \rightarrow \phi \phi$ Reaction The reaction $\overline{p}p \to \phi \phi$ may proceed via two gluon emission from $\overline{q}q$ annihilation. O All three valence quarks in p annihilate with the corresponding three antiquarks in \overline{p} to produce a purely gluonic state from which $\phi\phi$ is formed. This should be OZI-suppressed without an intermediate resonant gluonic state (glueball). # $\overline{p}p \to \phi \phi$ (JETSET) O JETSET observed unexpectedly large magnitude for $\overline{p}p \rightarrow \phi \phi$ cross section ^a. ^a JETSET, Il Nouvo Cimento 107, 2329 (1994); JETSET, Phys. Rev. D 57, 5370 (1998). ## Reaction Mechanisms for $\overline{p}p \rightarrow \phi \phi$ - A substantial OZI rule violation could be the signal of interesting new physics. - 1. Production of glueballs - 2. Coupling to four quark states involving $\overline{s}s$ such as $\phi(2170)/X(2239)^a$. - 3. Non-strange quark component of the ϕ meson, due to the actual mixing of the vector meson singlet and octet:^b $$\sigma(\overline{p}p \to \phi\phi) = \tan^4 \delta \cdot \sigma(\overline{p}p \to \omega\omega) \approx 10 \text{ nb},$$ - 4. The presence of substantial $\overline{s}s$ content in $\overline{p}p$ wave functions, - 5. Instanton induced interactions between quarks - 6. Hadron production and its rescattering in which each individual transition is OZI-allowed, - 7. Baryon exchange in t- and u- channel diagrams. ^b The angle $\delta(=\Theta_i-\Theta)$ denotes the difference between the ideal mixing angle $\Theta_i=35.3^\circ$ ($\sin\Theta_i=1/\sqrt{3}$) and the mixing $\frac{\partial}{\partial \Theta_i}$ between $\frac{\partial}{\partial \Theta_i}$ mesons and the SU(3) states (ω_0 , ω_8). ^aH.-W. Ke and X.-Q. Li, Phys. Rev. D 99, 036014 (2019); Q.-F. Lü et al., Chinese Phys. C 44, 024101 (2020). ## $\overline{p}p \rightarrow \phi \phi$ Reaction Theoretical calculations describe the JETSET results within an effective Lagrangian approach. ^a ^a I.-J. Xie, L.-S. Geng, X.-R. Chen, Phys. Rev. C 90, 048201 (2014); D.Y, Lee, J.K. Ahn, S.i. Nam, to be submitted in PRC. ## $\pi^- p \to \phi \phi n$ and $J/\psi \to \gamma \phi \phi$ Based on 1203 events of the reaction $\pi^-p \to \phi\phi n$ at 22 GeV/c, a BNL experiment reported an observation of two 2⁺⁺ mesons at 2160 and 2320 MeV. ^a $^{\it a}$ A. Etkin $\it et$ $\it al.,$ Phys. Rev. Lett. 49, 1620 (1982). BESIII reported an observation of $f_0(2100)$, $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$. ^a aBESIII, Phys. Rev D 93, 112011 (2016). ## $\overline{p}p$ Cross Sections and Experiments - PANDA awaits the construction of HESR, which could start in early 2030's. - J-PARC provides antiproton beams from 0.3 GeV/c to 20 GeV/c. - O J-PARC K1.8BR beam line delivered $2 \times 10^5 \overline{p}$ per spill (5.2 s) during the 50kW operation ¹. ^aT. Hashimoto *et al.*, Beam measurement at K1.8BR, June 2023. ## K1.8BR Beamline and Hyperon Spectrometer - The K1.8BR beamline delivered $2 \times 10^5 \overline{p}$ per spill during the 5.2 s duration (40 kHz) in the 50 kW operation.^a - \bigcirc The \overline{p} beam intensity can be scaled to 64 kHz at 80 kW. - O The background π^- beam intensity is roughly double that of the \overline{p} beam, resulting in a total beam intensity of 180 kHz or 720k/spill. $^{^{\}it a}$ T. Hashimoto $\it et al.$, Beam profile measurement at K1.8BR, June 2023. November 1, 2023 ## **HypTPC and Trigger Counters** - \bigcirc The BAC will reject unwanted beam particles such as π^- and μ^- . - The beam will enter the HypTPC and may interact with a proton within a liquid hydrogen target located inside the HypTPC. ## Background $\overline{p}p \rightarrow 4$ -prong Reactions | $\overline{p}p$ Reactions | $p_{\rm thre}^{\rm lab}$ (GeV/c) | |---------------------------|----------------------------------| | $2\pi^{+}2\pi^{-}\pi^{0}$ | 0 | | $2\pi^+2\pi^-$ | 0 | | $K^+K^-\pi^+\pi^-$ | 0 | | $\phi\pi^+\pi^-$ | 0 | | $2K^{+}2K^{-}$ | 0.662 | | ϕK^+K^- | 0.767 | | $\phi\phi$ | 0.866 | | $\overline{p}p\pi^+\pi^-$ | 1.219 | | $\overline{p}p\phi$ | 3.403 | | | | O Multipion production processes dominate $\overline{p}p$ reactions with four charged-particle emission. a ### Simulated Events for $\overline{p}p \rightarrow \phi \phi$ and $2\pi^+ 2\pi^-$ - \bigcirc HypTPC event displays for $\overline{p}p \rightarrow \phi \phi$ and $2\pi^+ 2\pi^-$ reactions. - All charged tracks are assumed to share the same vertex at the target. #### Particle ID and Momentum Balance Constraints - This energy-loss information assists in identifing particles based on the particle identification function $(dE/dx|_{meas} dE/dx|_K)^2/\sigma_K^2$. - O The 5π events are then further rejected by requiring transverse momentum balance. ## **Event Selection with Energy Balance Contraints** ○ Energy balance constraints in the center-of-mass energy $(\Delta m^2 = (p_{\overline{p}} + p_p)^2 - (\sum_{i=1}^4 p_i)^2 = 0$, where p_i denotes a four-momentum of particle i) between the intial and final states. ### **Reconstructed** $\phi\phi$ **Events** - From two K^+ and two K^- tracks, the correct pair of two oppositely charged kaons is chosen by selecting the pair with a mass closer to M_{ϕ} . - \bigcirc Background events involving pions are located on a parablic curvature away from M_{ϕ} . ## **Expected Yield** $\overline{p}p \rightarrow \phi \phi$ **Events** - For the 80 kW MR operation the trigger rate is 0.046 Hz. - O Background processes $(2\pi^+2\pi^-, 2\pi^+2\pi^-\pi^0)$ are largely suppressed by imposing kinematic constraints and ensuring excellent π/K separation of the HypTPC. - \bigcirc Reconstruction efficiency for the $\phi\phi$ events ($\varepsilon_{\text{recon}} = 0.6$). - Assuming the accelerator operates constantly 90% of the time ($\varepsilon_{\rm acc} = 0.9$), the number of $\phi\phi$ events ($\sigma = 3~\mu$ b) collected in a day is $$N_{2\phi} = 0.046/\text{s} \cdot \varepsilon_{\text{acc}} \cdot \varepsilon_{\text{recon}} \cdot \text{Br}(\phi \to K^+K^-)^2 \cdot 8.64 \times 10^4 \text{ s/d}$$ $$\approx 5.2 \times 10^2/\text{d}$$ ### **Beam Time Request** - O We are requesting 6.5 days of beam time. Three days will be dedicated to the high-statistics data collection at 1.15 GeV/c to measure spin observables. - The remaining 3 days will be allocated to measuring the reaction at other five momentum settings, allowing the statistical uncertainties within the range of 5%–10%. | 0.1 days | |--------------------------| | 0.4 days | | 1.0 days (~ 200 events) | | 0.5 days (~ 150 events) | | 0.5 days (~ 200 events) | | 0.5 days (~ 250 events) | | 0.5 days (~ 300 events) | | 3.0 days (~ 1500 events) | | | ## Double ϕ Production in $\overline{p}p$ Reactions near Threshold - The proposed experiment is meant as a feasibility study and independent confirmation of the enhancement of the production cross section near the threshold. - Detailed studies of the production mechanism are the perspective for future work, both in theory and experiment.