Exotic Hadron Spectroscopy with Photon and Hadron Beams

Searching for multiquark and glueball states

Jung Keun Ahn (Korea University)

Outline

- Multiquarks and Molecular States (involving Light Quarks)
- Pentaquarks
- Dibaryons
- Glueballs

MULTIQUARKS AND MOLECULAR

STATES

The (Clustered) Structure of Matter

Quarks and Hadrons

O Color force saturation binds quarks as a form of colorless hadrons.

Nucleons and α Cluster

Spin-Isospin force saturation binds nucleons as a form of scalar α clusters.

Quark Bound States

Dibaryon and Hexaquark States

- \bigcirc Bound state (color singlet) with two \triangle baryons
- Bound state (color singlet) with two color octet baryons (each individual cluster cannot exist)
- Bound state (color singlet) with six independent quarks

Baryons in the Quark Model

- If we combine the spin and the flavor degrees of freedom to an SU(6) spin-flavor symmetry, each quark can be in one of the six different states: $u \uparrow, u \downarrow, d \uparrow, d \downarrow, s \uparrow, s \downarrow.$
- For baryons, one can make the following direct product:

It is possible to decompose the multiplets into their $SU(2) \otimes SU(3)$ content.

Low-lying Hyperons in the Quark Model

$\overline{J^p}$	(D, L_N^P)	Octets			Singlet
1/2+	$(56, 0_0^+)$	$\Lambda(1116)$	$\Sigma(1193)$	至(1318)	
$1/2^{+}$	$(56, 0_2^+)$	$\Lambda(1600)^{***}$	$\Sigma(1660)^{***}$	$\Xi(?)$	
$1/2^{-}$	$(70,1_1^-)$	$\Lambda(1670)^{****}$	$\Sigma(1620)^*$	$\Xi(1690)$	$\Lambda(1405)$
3/2-	$(70,1_1^-)$	Λ(1690)****	$\Sigma(1670)^{****}$	王(1820)	$\Lambda(1520)$

Jр	(D,L_N^P)		Decuplets	
3/2+	$(56, 0_0^+)$	$\Sigma(1385)$	至(1530)	$\Omega(1672)$

Λ^* and Σ^* Resonances

Toward Drip Line of Multiquark States

Multiquark States

- O An exotic hadron is a state that cannot be classified in terms of standard qqq or $q\overline{q}$ configurations according to $SU_f(3)$ irreducible representations: multiquark states $(qq\overline{qq}, qqqq\overline{q}, 6q, \text{ and so on})$.
- The existence of multiquark hadrons is now firmly established in the meson sector: tetraquark states such as XYZ states.
- \bigcirc Recently, the LHCb collaboration claims on the observation of three hidden-charm pentaquark P_c states.
- The observation of such many multiquark candidates poses a question on the dripline of further multiquark states: hexaquark state.

PENTAQUARKS

Pentaquark States in $\overline{SU(3)_f}$ Antidecuplets

O For meson octet and baryon octet members, one can make the $SU(3)_f$ pentaquark multiplets:

$$8 \otimes 8 = 1 \oplus 8_S \oplus 8_A \oplus 10 \oplus \overline{10} \oplus 27$$

Pentaquark States in SU(3)_f Antidecuplets

The mass splitting between the members was predicted to be 180 MeV multiplied by their strangeness unit difference. This model prediction highlighted the low-mass and narrow width of the $\Theta^+(1540)$ and its spin-parity of $J^p = 1/2^+$ given as a rotating soliton.

Θ^+ Searches

- The $\Theta^+(uudd\bar{s})$ has been once firmly established by many experiments.
- \bigcirc A high-statistics photoproduction JLab experiment found no evidence of the Θ^+ and other higher-statistics results have done likewise. Irrefutable evidence?

Θ^+ Search at LEPS2

- LEPS2/SPring-8 looks for the Θ^+ via $\gamma d \to K^- K^0 pp$ reaction, followed by $\Theta^+ \to K^0 p$; $K^0(K_S) \to \pi^+ \pi^-$.
- \bigcirc All final state particles can be reconstructed using LEPS2 detector, which facilitate a wider angular coverage for K^- detection.

Θ^+ Formation in $K^+d \to K^0pp$ Reactions

Direct Θ^+ formation in the $K^+d \to K^0pp$ reaction at 0.5 GeV/ c^{a}

Pentaquark States in $SU(3)_f$ Antidecuplets

- \bigcirc Exotic N^* states (P_s) can sit in the isospin doublet places in the new $\overline{10}$ multiplet.
- If we assume a similar mass splitting between $P_{\overline{s}}$ and P_s states, $P_{\overline{s}}$ has a mass of 1.91 GeV a , which can be searched for in photoproduction.

^aG.S. Yang and S.-i. Nam in progress

P_s Search via $\gamma p o \phi \pi^0 p/\phi \pi^+ n$ with LEPS2

- O Photoproduction of P_s with pion involves $\gamma p \to \pi^0 p \ (P_s^+)$ and $\gamma p \to \phi \pi^+ n \ (P_s^0)$ reactions.
- O A simple event generator simulates $K^+K^-p\pi^0$ and $K^+K^-n\pi^+$ reactions involving ϕ , Δ , K^* , and P_s resonances.
- Exotic meson $\rho(1570)$ $J^{PC} = 1^{--}$, earlier referred to as C(1480), could contribute to the $\gamma p \rightarrow \phi \pi N$ reactions (not included in the present simulation).

P_s Search via Pion-induced Reactions

- While *t*-channel dominates in $\gamma p \rightarrow \phi p$, *s* channel dominates in $\pi^- p \rightarrow \phi n$.
- O The $\pi^- p$ reaction probes a P_s^0 , an *I*-doublet member with P_s^+ .
- Theoretical calculation supports an s-channel dominance below
 2.2 GeV/c (Sangho Kim).

$\pi^- p \to \phi n$ at J-PARC

- Only ϕ and Σ (1775) are included in $\pi^-p \to K^+K^-n$ reaction.
- J-PARC P95 detector will detect two charged kaons and reconstruct a neutron by a missing-mass technique.

The Most Promising Candidate in the Strange Sector

H-dibaryon

- \bigcirc : The H-Dibaryon (J=0, I=0) is a stable SU(3) $_f$ singlet hexaquark state consisting of *uuddss* quarks due to QCD color magnetic force.
- H is named after Hexa-quark states.

VOLUME 38, NUMBER 5

PHYSICAL REVIEW LETTERS

31 January 1977

Perhaps a Stable Dihyperon*

R. L. Jaffet

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P=0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H*) with $J^P=1^+$ at 2335 MeV should appear as a bump in Λ 4 invariant-mass plots. Production and decay systematics of the H are discussed.

Dibaryon Multiplets in SU(3)_f

The History of H-Dibaryon Searches

```
1977 • Deeply-bound di-hyperon predicted by R. Jaffe
1980-2000 ◆ No evidence for the deeply-bound H from KEK, BNL,
           • and CERN experimental efforts by more than 80 MeV
     2001 Mass constraint from observation of ^{6}_{\Lambda\Lambda} He (E373)
1998,2007 • Enhanced \Lambda\Lambda production near threshold was
             reported from E224 and E522 at KEK-PS.
     2011 • LQCD calculations predict the H-dibaryon near m_{\Lambda\Lambda}
2013-2015 • No evidence for H \to \Lambda p \pi^- and H \to \Lambda \Lambda
            in high-energy e^+e^-, pp and AA experiments
     2021 LQCD calculations point to the mass the H-dibaryon
             very close to \Xi N threshold (m_{\pi} \approx 146 \text{ MeV})
     2021 • J-PARC E42 has successfully completed with HypTPC.
     2024 • We are about to see what we would see in the E42 dataset.
```


H-Dibaryon Search at J-PARC: E42

The existence of the H-dibaryon still awaits definitive experimental confirmation or exclusion.

- Weakly-bound : $H \to \Lambda p \pi^-$
- O Virtual state : $\Lambda\Lambda$ or Ξ^-p threshold effect
- Resonance : Breit-Wigner peak in $\Lambda\Lambda$ and Ξ^-p masses

J-PARC-E42 experiment

- 1. in $\Lambda p \pi^-$, $\Lambda \Lambda$ and $\Xi^- p$ channels
- **2.** by tagging the S = -2 system production
- 3. via (K^-, K^+) reactions at 1.8 GeV/c with a diamond target
- 4. with Hyperon Spectrometer : 1 MeV $\Lambda\Lambda$ mass resolution

E42 Detector for the *H*-Dibaryon Search

 (K^-, K^+) reaction events are tagged by the K1.8 beam line and the KURAMA spectrometers. Decays of the S=-2 system are reconstructed using the Superconducting Hyperon Spectrometer. November 1, 2023 Slide 27

Hyperon Time Projection Chamber (HypTPC)

- The HypTPC operation was relatively stable except two events stopping the E42 run shortly.
- \bigcirc Event display for 0.4 GeV/c π^+ beam tracks accumulated in the calibration run.

$^{12}\mathbf{C}(K^-,K^+)$ Reaction Event

- Reconstructed K⁻ beam and outgoing K⁺ tracks share the vertex at the diamond target position.
- $\, \bigcirc \,$ Two Vs are seen in the HypTPC and four decay particles hit the HTOF.

November 1, 2023 Slide 29

Scattered Particles at Forward Angles

 \bigcirc We reconstructed the masses and momenta for scattered particles successfully with the forward K^+ spectrometer.

Particle Identification with HypTPC

- $\langle dE/dx \rangle_{20\% \text{ truncated vs } p/z \text{ for reconstructed HypTPC tracks in the diamond target dataset } (C(K^-, K^+)X)$ reactions).
 - $\sigma_{dE/dx}/\langle dE/dx \rangle \sim 20\%$ for the range $0.40 < p_T < 0.45$ GeV/c.

$\Lambda\Lambda$ Production in the (K^-, K^+) Reactions

Simulated $\Lambda\Lambda$ and Ξ^-p Mass Spectra

○ Simulated invariant-mass spectra for $H(2250) \rightarrow \Lambda \Lambda^a$ and $H(2265) \rightarrow \Xi^- p$ decays. b

^aSimulation on two-step processes is based on INC calculation by Y. Nara, A. Ohnishi, T. Harada and A. Engel, Nucl. Phys. A614 (1997) 433.

Simulated $\Lambda\Lambda$ Spectrum for H(2250) assuming $d\sigma/d\Omega=1.0~\mu b/sr$.

Simulated $\Xi^- p$ Spectrum for H(2265) assuming $d\sigma/d\Omega = 1.0 \ \mu \text{b/sr}$.

$\overline{p}p \rightarrow \phi \phi$ Reaction

The reaction $\overline{p}p \to \phi \phi$ may proceed via two gluon emission from $\overline{q}q$ annihilation.

O All three valence quarks in p annihilate with the corresponding three antiquarks in \overline{p} to produce a purely gluonic state from which $\phi\phi$ is formed. This should be OZI-suppressed without an intermediate resonant gluonic state (glueball).

$\overline{p}p \to \phi \phi$ (JETSET)

O JETSET observed unexpectedly large magnitude for $\overline{p}p \rightarrow \phi \phi$ cross section ^a.

^a JETSET, Il Nouvo Cimento 107, 2329 (1994); JETSET, Phys. Rev. D 57, 5370 (1998).

Reaction Mechanisms for $\overline{p}p \rightarrow \phi \phi$

- A substantial OZI rule violation could be the signal of interesting new physics.
 - 1. Production of glueballs
 - 2. Coupling to four quark states involving $\overline{s}s$ such as $\phi(2170)/X(2239)^a$.
 - 3. Non-strange quark component of the ϕ meson, due to the actual mixing of the vector meson singlet and octet:^b

$$\sigma(\overline{p}p \to \phi\phi) = \tan^4 \delta \cdot \sigma(\overline{p}p \to \omega\omega) \approx 10 \text{ nb},$$

- 4. The presence of substantial $\overline{s}s$ content in $\overline{p}p$ wave functions,
- 5. Instanton induced interactions between quarks
- 6. Hadron production and its rescattering in which each individual transition is OZI-allowed,
- 7. Baryon exchange in t- and u- channel diagrams.

^b The angle $\delta(=\Theta_i-\Theta)$ denotes the difference between the ideal mixing angle $\Theta_i=35.3^\circ$ ($\sin\Theta_i=1/\sqrt{3}$) and the mixing $\frac{\partial}{\partial \Theta_i}$ between $\frac{\partial}{\partial \Theta_i}$ mesons and the SU(3) states (ω_0 , ω_8).

^aH.-W. Ke and X.-Q. Li, Phys. Rev. D 99, 036014 (2019); Q.-F. Lü et al., Chinese Phys. C 44, 024101 (2020).

$\overline{p}p \rightarrow \phi \phi$ Reaction

 Theoretical calculations describe the JETSET results within an effective Lagrangian approach. ^a

^a I.-J. Xie, L.-S. Geng, X.-R. Chen, Phys. Rev. C 90, 048201 (2014); D.Y, Lee, J.K. Ahn, S.i. Nam, to be submitted in PRC.

$\pi^- p \to \phi \phi n$ and $J/\psi \to \gamma \phi \phi$

Based on 1203 events of the reaction $\pi^-p \to \phi\phi n$ at 22 GeV/c, a BNL experiment reported an observation of two 2⁺⁺ mesons at 2160 and 2320 MeV. ^a

 $^{\it a}$ A. Etkin $\it et$ $\it al.,$ Phys. Rev. Lett. 49, 1620 (1982).

BESIII reported an observation of $f_0(2100)$, $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$. ^a

aBESIII, Phys. Rev D 93, 112011 (2016).

$\overline{p}p$ Cross Sections and Experiments

- PANDA awaits the construction of HESR, which could start in early 2030's.
- J-PARC provides antiproton beams from 0.3 GeV/c to 20 GeV/c.
- O J-PARC K1.8BR beam line delivered $2 \times 10^5 \overline{p}$ per spill (5.2 s) during the 50kW operation ¹.

^aT. Hashimoto *et al.*, Beam measurement at K1.8BR, June 2023.

K1.8BR Beamline and Hyperon Spectrometer

- The K1.8BR beamline delivered $2 \times 10^5 \overline{p}$ per spill during the 5.2 s duration (40 kHz) in the 50 kW operation.^a
- \bigcirc The \overline{p} beam intensity can be scaled to 64 kHz at 80 kW.
- O The background π^- beam intensity is roughly double that of the \overline{p} beam, resulting in a total beam intensity of 180 kHz or 720k/spill.

 $^{^{\}it a}$ T. Hashimoto $\it et al.$, Beam profile measurement at K1.8BR, June 2023.

November 1, 2023

HypTPC and Trigger Counters

- \bigcirc The BAC will reject unwanted beam particles such as π^- and μ^- .
- The beam will enter the HypTPC and may interact with a proton within a liquid hydrogen target located inside the HypTPC.

Background $\overline{p}p \rightarrow 4$ -prong Reactions

$\overline{p}p$ Reactions	$p_{\rm thre}^{\rm lab}$ (GeV/c)
$2\pi^{+}2\pi^{-}\pi^{0}$	0
$2\pi^+2\pi^-$	0
$K^+K^-\pi^+\pi^-$	0
$\phi\pi^+\pi^-$	0
$2K^{+}2K^{-}$	0.662
ϕK^+K^-	0.767
$\phi\phi$	0.866
$\overline{p}p\pi^+\pi^-$	1.219
$\overline{p}p\phi$	3.403

O Multipion production processes dominate $\overline{p}p$ reactions with four charged-particle emission. a

Simulated Events for $\overline{p}p \rightarrow \phi \phi$ and $2\pi^+ 2\pi^-$

- \bigcirc HypTPC event displays for $\overline{p}p \rightarrow \phi \phi$ and $2\pi^+ 2\pi^-$ reactions.
- All charged tracks are assumed to share the same vertex at the target.

Particle ID and Momentum Balance Constraints

- This energy-loss information assists in identifing particles based on the particle identification function $(dE/dx|_{meas} dE/dx|_K)^2/\sigma_K^2$.
- O The 5π events are then further rejected by requiring transverse momentum balance.

Event Selection with Energy Balance Contraints

○ Energy balance constraints in the center-of-mass energy $(\Delta m^2 = (p_{\overline{p}} + p_p)^2 - (\sum_{i=1}^4 p_i)^2 = 0$, where p_i denotes a four-momentum of particle i) between the intial and final states.

Reconstructed $\phi\phi$ **Events**

- From two K^+ and two K^- tracks, the correct pair of two oppositely charged kaons is chosen by selecting the pair with a mass closer to M_{ϕ} .
- \bigcirc Background events involving pions are located on a parablic curvature away from M_{ϕ} .

Expected Yield $\overline{p}p \rightarrow \phi \phi$ **Events**

- For the 80 kW MR operation the trigger rate is 0.046 Hz.
- O Background processes $(2\pi^+2\pi^-, 2\pi^+2\pi^-\pi^0)$ are largely suppressed by imposing kinematic constraints and ensuring excellent π/K separation of the HypTPC.
- \bigcirc Reconstruction efficiency for the $\phi\phi$ events ($\varepsilon_{\text{recon}} = 0.6$).
- Assuming the accelerator operates constantly 90% of the time ($\varepsilon_{\rm acc} = 0.9$), the number of $\phi\phi$ events ($\sigma = 3~\mu$ b) collected in a day is

$$N_{2\phi} = 0.046/\text{s} \cdot \varepsilon_{\text{acc}} \cdot \varepsilon_{\text{recon}} \cdot \text{Br}(\phi \to K^+K^-)^2 \cdot 8.64 \times 10^4 \text{ s/d}$$
$$\approx 5.2 \times 10^2/\text{d}$$

Beam Time Request

- O We are requesting 6.5 days of beam time. Three days will be dedicated to the high-statistics data collection at 1.15 GeV/c to measure spin observables.
- The remaining 3 days will be allocated to measuring the reaction at other five momentum settings, allowing the statistical uncertainties within the range of 5%–10%.

0.1 days
0.4 days
1.0 days (~ 200 events)
0.5 days (~ 150 events)
0.5 days (~ 200 events)
0.5 days (~ 250 events)
0.5 days (~ 300 events)
3.0 days (~ 1500 events)

Double ϕ Production in $\overline{p}p$ Reactions near Threshold

- The proposed experiment is meant as a feasibility study and independent confirmation of the enhancement of the production cross section near the threshold.
- Detailed studies of the production mechanism are the perspective for future work, both in theory and experiment.

